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Executive Summary

International standards classify automated driving systems on a six-level scale, from no automation at
Level 0 to full automation at Level 5. Despite huge R&D budgets and much hype over the past decade,
fully autonomous (Level 5) cars are unlikely to become available to the general public any time soon.
In contrast, cars providing Level 2 (i.e., partial) automation can be purchased from manufacturers
including Tesla, Nissan and BMW; and the approval of Level 3 (i.e., conditional automation) and 4 (i.e.,
high automation) cars is being considered by regulators worldwide.

A critical requirement for vehicles operating at autonomy Levels 2 and 3 is that a user resides in the
driver’s seat and is sufficiently attentive to be able to share the control of the car with the automated
driving system. Although Level 4 autonomous vehicles do not rely on human support, they may still
issue timely requests for human intervention (e.g., when they approach traffic situations they were not
designed to handle), performing a minimum-risk manoeuvre (e.g., stopping the car safely) if their user
does not respond.

However, drivers find it very challenging to remain attentive when in charge of vehicles with au-
tomated driving systems, as shown by accidents involving both Level 2 autonomous cars used by
regular drivers, and cars with higher autonomy levels tested by professional safety drivers. To address
this challenge, recent regulations—such as the UN regulation on the approval of vehicles with auto-
mated lane keeping systems—advocate the use of autonomous systems capable of detecting driver
inattentiveness and of issuing automated alerts to mitigate it.

The Assuring Autonomy International Programme demonstrator project ‘Safe-SCAD: Safety of
Shared Control in Autonomous Driving’ has developed a proof-of-concept driver attentiveness man-
agement system for this purpose. The Safe-SCAD system comprises a deep neural network (DNN)
responsible for predicting the driver control-takeover behaviour, methods for verifying this DNN, and a
discrete-event controller that issues optical, acoustic and/or haptic driver alerts based on the predic-
tions of the DNN and the results of its online verification. This report describes the development and
integration of the SafeSCAD components, and the testing of the proof-of-concept SafeSCAD solution
in a driving simulator at the University of Virginia.

Developed with input from project partner Toyota Info Tech labs, the proof-of-concept SafeSCAD
solution shows that intelligent driver-attention management systems have the potential to improve the
safety of shared-control automated driving. Additionally, the research carried out to develop this solu-
tion has led to two important insights that are applicable to a broad range of autonomous systems. The
first insight is that formal analysis techniques for neural networks can be used to quantify the aleatory
uncertainty of multiclass deep neural network classifiers within the operational design domain of their
autonomous systems. Second, the project showed that the use of a combination of design-time and
online verification of neural networks enables the synthesis of conventional discrete-event controllers
guaranteed to satisfy key safety, dependability and performance requirements of autonomous sys-
tems, and to be Pareto optimal with respect to a set of optimisation objectives.



1 Introduction

Ensuring and assuring the safety of shared control in autonomous driving is very challenging due to
the uncertainties associated with measuring the level of situational awareness of safety drivers while
not in control of the vehicle, and with the mapping of such measures to control hand-back times and
likelihood of success. In this demonstrator project, we extended, adapted and integrated our previous
research and the latest advances from human behaviour and cognitive modelling, verification of deep
neural networks, and automated controller synthesis to tackle these challenges. We used an advanced
semi-autonomous driving simulator to deliver methods for ensuring and assuring the safety of shared
control in autonomous driving, and a demonstrator that leverages these methods. The project has
made contributions to the AAIP Body of Knowledge, in the areas of shared autonomy/human-machine
interaction, verification of machine learning, verification of deciding requirements, and implementation
of decision making elements.

Our project, titled “Safe-SCAD: Safety of shared control in autonomous driving,” has addressed
the following critical barrier about control handover in shared-control autonomous systems: if (semi-)
autonomous cars have to hand (back) control to a safety driver, how can it be ensured and assured that
the human has sufficient situational awareness to be able to take over control safely and effectively?
The project has pursued five concrete objectives:

» Objective 1: To develop deep-learning based methods for modeling and predicting of driver
takeover behavior, using multi-modal sensing data of vehicles and driver biometrics (e.g., eye-
tracking, heart rate, galvanic skin response).

» Objective 2: To develop methods for the verification of the deep neural networks from Objective
1, in order to guarantee (i.e., to provide assurance evidence for) the bounds of safety drivers’
behaviour.

» Objective 3: To develop methods and assurance evidence for the stochastic modelling of the
safety driver - autonomous car system, and for the synthesis of controllers capable of maintaining
suitable levels of driver situational awareness (e.g., by using audio, vibration and light stimuli to
improve human alertness).

» Objective 4: To develop a proof-of-concept demonstrator system that uses the methods and as-
surance evidence from Objectives 1-3 and the UVA semi-autonomous driving testbed. Figure
shows an overview of the developed demonstrator system.
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Figure 1: Overview of the Safe-SCAD demonstrator system.



» Objective 5: To contribute methods for ensuring and assuring the safety of robotics and au-

tonomous systems (RAS) ‘Handover’ to the AAIP BoK, and to inform the regulatory community
on these advances.

The results achieved by the project for Objectives 1—4 are described in Sections 2-5, with further
technical detail provided in Appendixes A-D.

All the project deliverable, including the BoK contributions for Objective 5, are made available at
https://drive.google.com/drive/folders/1RKtESQhvXk-9Qr-CVyii02Jrp17aVTBK?usp=sharing.


https://drive.google.com/drive/folders/1RKtESQhvXk-9Qr-CVyiiO2Jrp17aVTBK?usp=sharing

2 Prediction of Driver Takeover Behavior using Multimodal Data

2.1 Motivation and Background

Automated vehicles (AVs) promise a future where drivers can engage in non-driving tasks without
hands on the steering wheels for a prolonged period. In Level 3 of autonomy (i.e., conditionally auto-
mated driving), as defined by the Society of Automotive Engineers (SAE international [12]), the driver
does not need to continuously monitor the driving environment. Nevertheless, due to current technol-
ogy limitations and legal restrictions, AVs may still need to handover the control back to drivers occa-
sionally (e.g., under challenging driving conditions beyond the automated systems’ capabilities) [40].
In such cases, AVs would initiate takeover requests (TORs) and alert drivers via auditory, visual, or
vibrotactile modalities [44), 54, 46| so that the drivers can resume manual driving in a timely manner.
However, there are challenges in making drivers safely take over control. Drivers may need a longer
time to shift their attention back to driving in some situations, such as when they have been involved
in NDRTSs for a prolonged time [56] or when they are stressed or tired [23]. Even if TORs are initiated
with enough time for a driver to react, it does not guarantee that the driver will safely take over [41].
Besides, frequent alarms could startle and increase drivers’ stress levels leading to detrimental user
experience in AVs [47,133, 35]. These challenges denote the need for AVs to constantly monitor and
predict driver behavior and adapt the systems accordingly to ensure a safe takeover.

The vast majority of prior work on driver takeover behavior has focused on the empirical analysis
of high-level relationships between the factors influencing takeover time and quality (e.g., [43, 57,17,
20]). More recently, the prediction of driver takeover behavior using machine learning approaches
has been drawing increasing attention. However, only a few studies have focused on the prediction
of either takeover time |36 3] or takeover quality [, [14, [16} [18]; and their obtained accuracy results
(ranging from 61% to 79%) are insufficient for the practical implementation of real-world applications.
This is partly due to the fact that takeover prediction involves a wide variety of factors (e.g., drivers’
cognitive and physical states, vehicle states, and the contextual environment) that could influence
drivers’ takeover behavior [55].

2.2 Our Approach

To address the aforementioned challenges, we developed a novel approach, named DeepTake, to
provide reliable predictions of multiple aspects of takeover behavior, including (1) takeover intention
— whether the driver would respond to a TOR; (2) takeover time — how long it takes for the driver to
resume manual driving after a TOR; and (3) takeover quality — the quality of driver intervention after
resuming manual control.

As illustrated in Figure |2, DeepTake considers multimodal data from various sources, including
driver’s pre-driving survey response (e.g., gender, baseline of cognitive workload and stress levels),
vehicle data (e.g., lane position, steering wheel angle, throttle/brake pedal angles), engagement in
NDRTSs, and driver biometrics (e.g., eye movement for detecting visual attention, heart rate and gal-
vanic skin responses for the continuous monitoring of workload and stress levels). This data can
easily be collected in AVs’ driving environment. For instance, all of the driver biometrics utilized in
DeepTake can be captured by wearable smartwatches and deployed eye-tracking systems. The mul-
titude of sensing modalities and data sources offer complementary information for the accurate and
highly reliable prediction of driver takeover behavior. The collected multimodal data are pre-processed
followed by segmentation and feature extraction. The extracted features are then labeled based on the
belonging takeover behavior class. In our framework, we define each aspect of takeover behavior as
a classification problem (i.e., takeover intention as a binary classes whereas takeover time and quality
as three multi-classes). Finally, we built DNN-based predictive models for each aspect of takeover



behavior. DeepTake takeover predictions can potentially enable the vehicle autonomy to adjust the
timely initiation of TORs to match drivers’ needs and ultimately improve safety.
Below, we describe the detailed steps of the DeepTake approach.

1. Data Collection: we collect multimodal data such as driver biometrics, pre-driving surveys, types
of engagement in non-driving related tasks (NDRTs), and vehicle data. Collecting multimodal
data copes with the main drawback and inability to provide the underlying complicated state of
the driver. As driving is a dynamic task and could be impacted by internal and external factors,
multiple physiological data streams were used. However, DeepTake can be adjusted to fit the
data entry.

2. Pre-processing: the collected multimodal data are preprocessed followed by segmentation and
feature extraction. Due to sensitiveness of physiological wearables, intensive preprocessing
should be applied to remove motion artifacts and extract meaningful information. The extracted
features are then labeled based on the belonging to takeover behavior class.

3. Labelling: DeepTake tends to cover multiple aspects of takeover behavior to provide more re-
liable outcomes. We define each aspect of takeover behavior as a multi-class classification
problem (i.e., takeover intention as a binary class whereas takeover time and quality as three
multi-classes). Thus, we labeled takeover time as the period from the moment the takeover re-
quest alarm is triggered to the moment a participant initiates regaining control by pressing the
two embedded buttons on the steering. This period defines the takeover time for each participant
which categorized as Low, Medium, and High. In addition, we consider a motivating scenario
where the driver needs to take over control of the vehicle and swerve away from an obstacle
blocking the same lane; meanwhile, the vehicle should not deviate too much from the current
lane, risking crashing into nearby traffic. Thus, takeover quality was labeled as the lateral devi-
ation from the current lane. we label the feature vectors into three classes of takeover quality:
“low” or staying in a lane when the deviation is smaller than 3.5 meters, “medium” or maneuver
the obstacle when the deviation is grater than 7 meters, or “high” or maneuver safely when the
deviation is between 3.5 and 7 meters.

4. Modeling: DeepTake utilizes a feed-forward deep neural network (DNN) with a mini-batch
stochastic gradient descent. The DNN model architecture begins with an input layer to match the
input features, and each layer receives the input values from the prior layer and outputs to the
next one. Although we used 3classes of takeover time and quality, the output layer of DNN model
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Figure 2: DeepTake uses data from multiple sources (pre-driving survey, vehicle data, non-driving re-
lated tasks (NDRTSs) information, and driver biometrics) and feeds the preprocessed extracted features
into deep neural network models for the prediction of takeover intention, time and quality.

Lane position

Steering angle

T
o
2
)
&
Takeover




Start Conversation  Takeover Incident

Cellphone request (TOR)
] Reading : Switch
. § 5 Arithmetic _ s tTakef)ver Control
= : ate . .
- s [0 v NDRT >V ition - v :
E 3 || X Transition — | Driving - < NDRT >
— | Takeover . | : t’
T = time .
""“ B . : : Automated
B & “— Automated Driving T« Manual Driving ———>* Driving
oo lel . dmmmmemees > (&
L A, B W —memeemee e ee e e e — e — e —————— - — i = ————————————— [
TR | o
=3 - S

Figure 3: A schematic view of an example of a takeover situation used in our study, consisting of:
1) takeover timeline associated with participants’ course of action; 2) system status; and 3) takeover
situation. The vehicle was driven in the automated mode to the point after the TOR initiation and
transitioning preparation period. The ego vehicle is shown in red and the lead car is white. When the
Ego vehicle reaches its limits, the system may initiate (true alarm) or fail (no alarm) to initiate the TOR,
and the driver takes the control back from the automated system.

can be customized for the multi-class classification. In fact, we also demonstrated the capabil-
ity of DeepTake in predicting 5-class takeover time. We evaluate the DNN-model performance
against multiple state-of-art models.

2.3 Evaluation

We validate DeepTake framework feasibility using data collected from a driving simulator study. The
driving scenarios comprised a 4-lane rural highway, with various trees and houses placed alongside
the roadway. We designed five representative situations where the AVs may need to prompt a TOR to
the driver, including novel and unfamiliar incidents that appear on the same lane. Figure [3displays an
example of a takeover situation used in our study. The designed unplanned takeovers let participants
react more naturally to what they would normally do in AVs, participants’ reaction times are in de-
tectable categories. In other words, participants have no previous knowledge of incident appearance,
which might happen among other incidents requiring situational awareness and decision-making.

There are a number of potential methods to address reliability of the models. Each of these meth-
ods shows a different aspect of the model. We evaluate the performance of DeepTake framework by
multiple metrics. Applying different metrics reflect the goodness of the proposed model in different
aspects. We first apply 10-fold cross-validation on training data to evaluate the performance of se-
lected features in the prediction of driver takeover intention, time and quality. We then compared the
proposed model against 6 other models using Receiver Operating Characteristic (ROC), and weighted
F1 scores. We finally use the confusion matrix to further illustrate the summary of DeepTake’s perfor-
mance on the distinction of takeover intention, time, and quality per class. The results show that Deep-
Take models significantly outperform six machine learning-based models in all predictions of takeover
intention, time and quality. Specifically, DeepTake achieves an accuracy of 96% for the binary classifi-
cation of takeover intention, 93%, and 83% accuracy for multi-class classification of takeover time and
quality, respectively. These accuracy results also outperform results reported in the existing work. We
refer to Appendix A for details of these results.



2.4 Implications

We believe that our human-centered DeepTake framework makes a step towards enabling a longer
interaction with none driving related tasks (NDRTSs) for automated driving. DeepTake provides a new
approach to help the monitoring systems to constantly observe and predict the driver’s mental and
physical status by which the automated system can make optimal decisions and improve the safety
and user experience in AVs. Specifically, by integrating the DeepTake framework into the monitoring
systems of AVs, the automated system infers when the driver has the intention to takeover through
multiple sensor streams. Once the system confirms a strong possibility of takeover intention, it can
adapt its driving behavior to match the driver’s needs for acceptable and safe takeover time and quality.
Therefore, a receiver of TOR can be ascertained as having the capability to take over properly, other-
wise, the system would have allowed the continued engagement in NDRT or warned about it. Thus,
integration of DeepTake into the future design of AVs facilitates the human and system interaction to
be more natural, efficient and safe. Since DeepTake should be used in safety-critical applications, we
further validated it to ensure that it meets important safety requirements.

DeepTake framework provides a promising new direction for modeling driver takeover behavior to
lessen the effect of the general and fixed design of TORs which generally considers homogeneous
takeover time for all drivers. This is grounded in the design of higher user acceptance of AVs and
dynamic feedback. The information obtained by DeepTake can be conveyed to passengers as well as
other vehicles letting their movement decisions have a higher degree of situational awareness.



3 Verification of Deep Neural Networks

We report here on the analysis of a neural network component that was built for predicting takeover
time in the shared-control autonomous driving system. The network was trained on data collected from
a (semi-)autonomous driving simulator. The network is a fully-connected network with three hidden
layers and ReLU activation functions. More details about the work can be found in [31].

We report results for the following types of analysis: attribution and trust in neural networks, formal
robustness analysis, and confidence analysis via calibration of neural networks. We further performed
work on mining properties of neural networks and transfer learning for building personalized models.
Due to space constraints, we do not describe them here but details can be found in [31].

3.1 Attribution and Trust in Neural Networks

Neural networks are essentially black-box models, which generate a prediction based on input features
and some learned weights. In critical applications, it is imperative to understand how and why the
model gives the predictions, by identifying the important features that have the highest impact on the
model predictions. We therefore designed and evaluated a framework to determine feature importance
as viewed by the model.

We examined off-the-shelf state-of-the-art methods such as SHAP [37], LIME [50] and Integrated
Gradients (IG) [51]. SHAP and Integrated Gradients are white-box techniques whereas LIME is a
black-box method for attribution analysis. Given a set of input samples, we generate an importance
vector of size, 1 x n_features per sample. We randomly selected 3000 samples and created a 3000
x n_features importance matrix. From the importance matrix, we computed the number of times a
feature was regarded as top-k important feature (with the respective method) and created a dictionary
where for each feature there are k values and each value signifies the number of times that feature
was regarded as k" important feature. For validation, we dropped the features that were found of less
importance, re-trained network using the same architecture, and evaluated the resulting accuracies.

3.1.1 Results

In Figure[4] for each feature, the measured importance values are plotted for the three evaluated meth-
ods (SHAP, LIME and IG). Each bar has 5 parts, demonstrating the top-5 importance values. It can be
observed that FixationSeq, FixationStart and Manualwheel are given high importance values by the
three methods, whereas ManualBrake is given a high importance value only by LIME. Some features,
such as FixationDuration, AutoWheel, RightLaneType, RangeW appear to have low importance val-
ues. Figure [5]depicts the model accuracy after dropping low-importance features. It also validates the
importance values as measured by the three methods. For example, ManualWheel and FixationSeq
are important features hence dropping those results in lower accuracy. Dropping FixationDuration,
RangeW and AutoWheel results in a model with comparable accuracy, demonstrating that they are
indeed of low importance. The results indicate that SHAP and |G have similar performance, with LIME
giving some outliers. The experiments indicate that existing attribution techniques can indeed be used
to understand the model behaviour and furthermore can be used to optimize the model (by dropping
some features that have little influence over model predictions).

3.2 Clustering for Robustness Analysis

Robustness analysis of neural networks aims to formally verify that small perturbations to inputs do
not modify the network predictions. One approach for robustness analysis is to use label guided k-
means clustering [23] on the training data to find regions in the input space where the model prediction
does not change, and the model is thus potentially robust to input perturbations. Model robustness in
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Figure 5: Bar plot depicting the accuracy of models trained with dropped features

these regions is then further validated using formal methods. We report here on an extension of this
clustering-based approach for robustness analysis. In particular, we investigated ways to improve the
clustering algorithm used to find the robust regions.
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Figure 6: Clustering results

The original label guided k-means clustering algorithm often produces clusters (or regions) that
contain a single training data point. Such single point regions are not very useful for robustness
analysis since they only cover a small volume of the input space. Moreover, it increases the cost of
formal verification since model robustness has to be verified in a large number of small regions as
opposed to a small number of large regions (note that the cost of verification scales with the number
of regions). The existence of clusters with a single training data point can be attributed to the fact
that these points did not fall close to the initialized cluster centroids. To address this issue, methods
such as weighted k-means clustering, elbow method, and centroid initializations were implemented
and evaluated. For the elbow method, it was found that setting the initial number of clusters to 150
(i.e., k=150) was a good start for the clustering algorithm on our dataset.

3.2.1 Clustering Results

The results in Figure 6 show the number of regions on y-axis with each region containing 'n’ number
of points, where n is depicted on the x-axis. The 3 bars are the comparison of the clustering results of
the 3 methodologies we considered:

« unmodified label guided k-means (initial method)
* mean aggregated weighted k-means
* mean centroid initialized k-means

There are 5 categories of these clusters as represented on the x-axis with 'n’ ranging from 1 to
1000. The best case would be to have less number of regions with 'n == 1’ and the more regions with
'n >= 1000". Out of the 3 methods, the mean-centroid initialization has the least amount of regions
with n==1 (5917 regions as compared to 9000+ regions for the other two methods.) and higher amount
of regions with 'n >= 100’. This indicates that the clustering has fewer singular point clusters. The
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weighted k-means method and the unmodified method produce similar results, so choosing the mean
centroid initialization would be more beneficial amongst the 3 methods.

3.2.2 Verification with Marabou

The regions computed with k-means clustering were passed to Marabou [32] for verification of robust-
ness. Essentially, for a region R with centroid C' and radius » we use Marabou to check that all the
points in the region have the same label (and thus the model is robust — behaves consistently —in that
region). The verification results indicated that for the modified k-means clustering, it was possible to
verify larger regions. The number of ¢ = 0 regions for the current implementation amounted to 116
whereas the previous implementation had 464 such regions. The value ¢ = 0 indicates a result of
either incorrect centroid initialization or the search space being too large for Marabou to verify within
the time limit assigned ( which was set to be 5 minutes per region).

The plots show the comparison of two parameters, (i) maximum verified radius; (ii) maximum
cluster radius. The comparison of the radius (bar plot on the right in figure [7) attribute shows that the
modification performed on the k-means clustering resulted in larger regions. When these regions were
put through Marabou for verification, the maximum radius verified for each class is marginally better
than the unmodified k-means methodology.

When Marabou fails to prove a property, it returns a counterexample. For the properties that we
checked, a counterexample has the form of an input that is in a region R and has label different
than the other points in the region. We performed experiments to determine if we can increase the
robustness of the model by using the counterexamples found from Marabou. The results can be found
in [31].

3.3 Calibration and Confidence

For real-world safety-critical systems, neural networks must not only be accurate and robust but they
should also indicate when they are likely to be incorrect. The formally verified safe regions described
above provide one measure of confidence for points that exist within the regions, however they are not
capable of providing confidence about points outside those regions. To add a measure of confidence

12
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for inputs which exist outside of the safe regions, we also investigated confidence calibration [26]. Con-
fidence calibration is concerned with the problem of predicting probability estimates representative of
the true correctness likelihood. In particular, we investigated temperature scaling, a single-parameter
variant of Platt scaling, as a simple and effective way to post-process a network such that the prob-
abilities associated with each predicted class reflect the correctness likelihood of the prediction. The
method does not change the accuracy of the network; it uses the same parameter T' (temperature) to
soften the network output making the network less confident when making wrong predictions.

3.3.1 Results

Figure 8| depicts a reliability diagram which shows accuracy as a function of confidence measure for
the original, un-calibrated model. A well calibrated model would have the bars well-aligned with the
diagonal line (identity function), and will have same accuracy and confidence for a given bin. Although,
most of the bars seem to be well-aligned, we observe gaps for some confidence intervals. These gaps
illustrate low confidence of the model for samples whose prediction fall in that interval.

Figure [9] depicts the model’s output after calibration using temperature scaling. We obtain a better
calibrated model without affecting the model’s accuracy.

In the following section, we describe how to use verification and calibration results to guide the
controller synthesis with provable guarantees.
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4 Synthesis of Safe-SCAD Controllers

The J3016 standard [45] classifies automated driving systems (ADSs) on a six-level scale, from no
automation at Level 0 to full automation at Level 5. Despite huge R&D budgets and much hype over
the past decade, fully autonomous (Level 5) cars are unlikely to become available to the general
public any time soon. In contrast, cars providing Level 2 (i.e., partial) automation can be purchased
from manufacturers including Tesla, Nissan and BMW; and the approval of Level 3 (i.e., conditional
automation) and 4 (i.e., high automation) cars is considered by regulators worldwide [10. 6} 21}, 29 52].

A critical requirement for vehicles operating at autonomy Levels 2 and 3 is that a user resides in
the driver’'s seat and is sufficiently attentive to be able to share the control of the car with the ADS. At
Level 2, this human in the loop is expected to ‘complete the object and event detection and response
subtask and [to] supervise the driving automation system’, while at Level 3 the user is expected to
be ‘receptive to ADS-issued requests to intervene [...] and [to] respond appropriately’ [45]. Although
Level 4 ADSs do not rely on human support, they may still issue timely requests for human intervention
(e.g., when they approach roads or traffic situations they were not designed to handle), performing a
minimum-risk manoeuvre (e.g., stopping the car safely) if their user does not respond.

In these scenarios, accidents with potentially fatal consequences (for Levels 2 and 3) and frequent
emergency stops (for Level 4) can only be avoided if the drivers are sufficiently attentive to be able to
take over the control of their vehicles [42]. However, humans find it very difficult to remain attentive
when overseeing the operation of automated and autonomous systems [11,[19][39]. In the automotive
domain, this is amply demonstrated by accidents involving both cars with Level 2 ADS used by regular
drivers [2, 53] and cars with higher autonomy levels tested by professional safety drivers [22].

SafeSCAD proposes an approach that mitigates this problem by using a sense-understand-decide-
act (SUDA) control loop to improve driver attentiveness in shared-control autonomous driving. The
sensing component of this control loop uses an array of sensors to collect driver biometrics and vehicle
data. The understanding component uses these data and the deep neural network [48] presented
earlier in this report to predict the driver response time to a potential ADS intervention request. This
results in a classification of the driver as attentive, semi-attentive or inattentive, and guides the planning
of driver alerts by a formally verified discrete-event controller. This controller—whose development is
described next—ensures that the risk due to driver inattentiveness does not exceed a predetermined
level, and achieves Pareto-optimal trade-offs between risk level and driver nuisance.

4.1 Problem definition

Given a shared-control ADS vehicle, we assume that its driver can have one of n; > 2 attentiveness
levels. The highest level (‘attentive’) corresponds to the situation in which the driver can respond timely
to a transition demand. The other levels correspond to diminished driver attentiveness and therefore to
increased risk that can be mitigated through issuing alerts to improve the driver’s attentiveness level.

We assume that the ADS can activate one or several of K > 1 alerts (e.g., optical, acoustic and
haptic) as needed to improve the driver’s attentiveness. As such, the ALKS state at any point in time
is characterised by:

1. the driver attentiveness level k € {1,2,..., K}, where k = 1 and k = K correspond to the driver
being ‘attentive’ and ‘inattentive’, respectively;

2. the set of active alerts a € {0,1}", where a = (a1, as,...,ay,) indicates that the i-th alert is
inactive when a; = 0, and active when q; = 1.

Using the notation [K] = {1,2,..., K} and A = {0,1}"« to denote the sets of possible values for the
two components of the system state, we further assume that the following measures are defined over
the state space [K] x A:
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1. nuisance : A x [K| — R>q, where nuisance(a, k) represents the nuisance experienced by the
driver when the alerts a € A are in use and the driver attentiveness level is k, with

nuisance((0,0,...,0),k) =0
forall k € [K];

2. risk : [K] — Rx>o, where risk(k) provides a measure of the risk during time periods when the
driver attentiveness level is k € [K].

Finally, we assume that timing data are available about the drivers’ transition between the at-
tentiveness levels [K], when different alert combinations are active, and at different vehicle speeds.
These data may be available from studies of driver behaviour [36], [38], experiments carried out by
autonomous vehicle manufacturers, observations of drivers who are using the deployed ADS, or a
combination thereof. Given such data, the driver attentiveness management problem is to find a com-
bination of alerts a € A to use for each predicted driver attentiveness level i € K (i.e., attentiveness
level predicted by a deep neural network that classifies the driver attentiveness level), such that the
system

+ does not exceed a predetermined level of risk,
+ achieves Pareto optimality between minimising the driver nuisance and minimising the risk

over a period of T" hours of driving. For additional details, please see Appendix [C]

4.2 SafeSCAD controller synthesis

To solve the problem defined in the previous section, we used a new discrete-event controller synthesis
approach called DEePDECS|[8].

Overview. DEEPDECS uses a parametric discrete-time Markov chain (pDTMC) to model the design
space of the controller under development. The uncertainty due to the use of a deep-learning percep-
tion component within the system to be controlled and, if applicable, the uncertainty inherent to the
system and its environment are modelled by the probabilities of transition between the states of this
pDTMC. Finally, the controller synthesis problem involves finding combinations of parameter values
for which the Markov chain satisfies strict safety, dependability and performance constraints, and is
Pareto-optimal with respect to a set of optimisation objectives. These constraints and optimisation
objectives are formalised as probabilistic temporal logic formulae.

DeEePDECS derives the pDTMC underpinning its controller synthesis automatically from (i) DNN
verification results that quantify the uncertainty due to the deep-learning perception component, and
(i) an “ideal” pDTMC that models the behaviour of the controlled system assuming perfect percep-
tion (Figure[10g). The set of correct-by-construction, Pareto-optimal DEEPDECS controllers is then
synthesised by applying a combination of probabilistic model checking and search techniques to the
derived pDTMC. As shown in Figure [T0p, each of these controllers operates by reacting to changes in
the system, in the DNN outputs and, unique to DEEPDECS, in the results obtained through the online
verification of each DNN input and prediction.

We detail each stage of the DEEPDECS approach and its application to the SafeSCAD problem
below.

Stage 1: DNN uncertainty quantification. This section provides a brief introduction to DNN classifier
verification, and describes the use of such verification techniques to quantify the aleatory uncertainty
of DNN classifiers.

"Deep neural network perception Discrete-Event Controller Synthesis
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(a) DEEPDECS generates discrete-event controllers aware of the uncertainty induced by the DNN perception
component of an autonomous system in three stages. First, in a DNN uncertainty quantification stage, n ver-
ification methods are used to evaluate the DNN perception component over a test dataset representative for
the operational design domain (ODD) of the autonomous system. The verification results provide a quantifica-
tion of the DNN prediction uncertainty within the system ODD. Next, the Model augmentation stage uses these
results—and an ideal-system pDTMC model that assumes perfect perception—to assemble a pDTMC system
model that takes the DNN-induced uncertainty into account. Finally, the Controller synthesis stage uses this
pDTMC model to synthesise a set of Pareto-optimal discrete-event controllers guaranteed to satisfy the PCTL-
encoded requirements (constraints and optimisation objectives) of the system.
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(b) SafeSCAD driver-attentiveness management system. Data from car sensors (1) and driver biometric sensors
(2) are supplied to a DNN perception component that classifies the driver state as attentive, semi-attentive or
inattentive. The DEEPDECS controller decides when optical, acoustic and/or haptic alerts (3) should be used
to increase the driver’s attentiveness.

Figure 10: DEEPDECS controller synthesis (a), and deployment (b)

a) Verification of DNN classifiers. A K-class DNN classifier fy is a function, composed of linear
and non-linear transformations, of the form

fo 1R — [K], (1)
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where [K| denotes the set {1, ..., K}, and 6 refers to the weights or parameter values that characterize
the linear transformations. As the results presented in this article are oblivious to the internal details
of DNNs, we will by default omit the subscript 6, and treat f as a black-box function.

DNN classifiers are learnt from data, and are not guaranteed to always classify their input correctly.
DNN verification techniques can help assess the quality of a classifier for a given input. A verification
technique has the general form

verif : (R = [K]) x R — B, 2)

such that, for a classifier f € R? — [K] and an input z € R?, verif(f,xz) = true if the verification
technique deems the DNN f likely to classify the input = correctly, and verif (f,z) = false otherwise.
Two examples of simple DNN verification techniques (which we use to evaluate DEEPDECS later in
the article) are:

1. Model confidence threshold—A K-class DNN classifier is practically implemented as a function
of type R? — [0, 1], with each input = € R first mapped to a discrete probability distribution
0(x) = (p1,p2,--.,pK) over the K classes, and the class corresponding to the highest probability
is chosen as the classifier prediction. The probability associated with a class can be interpreted
as estimating the probability that the class is the true label of x. While it has been observed that
classifiers may not be well-calibrated, i.e., the estimated correctness probabilities may be far from
the true probabilities, a number of methods have been proposed to calibrate DNN classifiers
[27]. Assuming that a classifier is well-calibrated using one of these methods, a simple DNN
verification technique is to check whether the estimate correctness probability for an input x is
greater than a fixed threshold 7 for the class with the highest probability:

true, if max{il pi>T
false, otherwise

verif1(f,) = { @)

2. Local robustness certification [9]—A DNN classifier f is e-locally robust at an input z if perturba-
tions within a small distance ¢ > 0 from = (measured using the ¢, metric) do not lead to a change
in the classifier prediction. Accordingly, the local robustness verifier is defined by

true, if Vo' € R ||z — 2'||s < €

verifo(f,z) = = f(z) = f(a') (4)

false, otherwise

for any input = € R%.

b) Quantification of DNN perception uncertainty. The use of DNN perception introduces aleatory
uncertainty into the autonomous system since DNNs are not guaranteed to predict accurately on all
inputs. In the first DEEPDECS stage, we use a mechanism that relies on DNN verification techniques
to empirically quantify the uncertainty of the DNN outcomes.

Let X C R< be a representative test dataset for the DNN classifier (T), i.e., a set of classifier inputs
that reflects the inputs that the autonomous system using the DNN will encounter in its ODD. For any
testinput z € X, let f*(x) € [K] be the label (i.e., the true class) of =, which is known since X is a test
dataset.

DEePDECS uses n > 0 DNN verification techniques wverif |, verif, ..., verif,, to identify subsets
of X for which the classifier is likely to achieve higher accuracy than for the entire set XE] We use
the n verification methods to partition the test dataset X into 2™ subsets comprising inputs = with the

2Note that DEEPDECS is also applicable in the special case when n = 0, i.e., when no verification techniques is used.
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same verification resultsE] Formally, for a DNN classifier f and any v = (v1,vg,...,v,) € B", we define
the test data subset
X, = {z € X | verif (f,z) = v}, (5)

where verif (f,x) = (verif {(f,x), verifo(f,x), ..., verif ,(f,x)). We use each of these test data sub-
sets to define a K x K confusion matrix C, such that, for any k, k" € [K], the element in row k£ and
column £’ of this matrix is given by the number of inputs from X, with true class k& that the DNN
classifies as belonging to class &’

Colk, K] = #{x € X, | f(x) = kA f(x) =K}, (6)

where, for any set A, # A denotes its cardinality.

As the test dataset X is representative of the DNN inputs that the system encounters in opera-
tion, we henceforth assume that the probability that a class-k input z satisfies verif (f,z) = v and is
(mis)classified by the DNN as belonging to class £’ is given by

Cylk, K]

Prkv = Pr (f(l‘) = k' A werif (f,z) = U’ (@) =k) = S emn Sk (K] Cy [k, k"]’ (7)
v’/ €B™ e vr LY

Stage 2: Model augmentation. This section provides a brief introduction to pDTMCs, defines the
discrete-event controller synthesis problem, and presents the DEEPDECS theory underlying the gen-
eration of pDTMCs that model the behaviour of, and support the synthesis of controllers for, au-
tonomous systems with deep-learning perception components.

a) Discrete-time Markov chains. DEEPDECS models the design space (i.e., the possible variants)
for the controller of an autonomous system as a pPDTMC augmented with rewards.

Definition 1. A reward-augmented discrete-time Markov chain (DTMC) over a set of atomic proposi-
tions AP is a tuple
M = (S,s0,P, L, R), (8)

where S # () is a finite set of states; sy € S is the initial state; P : S xS — [0, 1] is a transition probability
function such that, for any states s, s’ € S, P(s,s’) gives the probability of transition from state s to
state s’ and )", g P(s,s') =1, L: S — 24P s a labelling function that maps every state s € S to the
atomic propositions from AP that hold in that state; and R is a set of reward structures, i.e., function
pairs (p, 1) that associate non-negative values with the pDTMC states and transitions:

p:S—=>R>p, t:5%x85—=Rsg. (9)

When (8) includes unknown transition probabilities and/or reward values, the DTMC is termed para-
metric.

Definition 2. A reward-augmented parametric discrete-time Markov chain is a DTMC comprising
one or several transition probabilities and/or rewards that are specified as rational functionﬂ over a
set of continuous variables [13].

DEePDECS uses probabilistic computation tree logic (PCTL) [28, 4] extended with rewards [1]
to quantify the safety, dependability and performance properties of an autonomous system whose
controller design space is modelled as a pDTMC.

3As typical values for n are n = 1,2, 3, there will only be a small number of such subsets.
*Formally, this results holds as #X — oo.
5i.e., functions that can be written as fractions whose numerators and denominators are polynomial functions, e.g., 1 — p

or i=m1
p2
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Definition 3. State PCTL formulae ® and path PCTL formulae ¥ over an atomic proposition set AP,
and PCTL reward formulae ®x over a reward structure (9) are defined by the grammar:

O u=true|a | PAD | P | Pop¥]
Uu=X0|0UD| DUk (10)
PR = R [CSF] | R [F @]

where o € AP is an atomic proposition, ~c {>,>,<,<} is a relational operator, p € [0,1] is a
probability bound, r € R{ is a reward bound, and k € N~ is a timestep bound.

The PCTL semantics [28, |4, [1] is defined using a satisfaction relation |= over the states of a DTMC.
Given a state s of a DTMC M, s = ® means ‘® holds in state s’, and we have: always s |= true; s = «
iff « € L(s); s = 2®iff =(s = ®); and s = &1 A @3 iff s = & and s |= ®2. The time-bounded until
formula ®, USF &, holds for a path (i.e., sequence of DTMC states sgs;ss ... such that P(s;, s;11) > 0
for all i > 0) iff ®; holds in the first i < k path states and ®, holds in the (i 4+ 1)-th path state; and the
unbounded until formula ®, U &, removes the bound & from the time-bounded until formula. The next
formula X ® holds if ® is satisfied in the next state. The semantics of the probability 7 and reward R
operators are defined as follows: P.,[¥] specifies that the probability that paths starting at a chosen
state s satisfy a path property ¥ is ~ p; R~.[C=*] holds if the expected cumulated reward up to time-
step k is ~ r; and R...[F'®] holds if the expected reward cumulated before reaching a state satisfying
® is ~ r. Replacing ~p (or ~r) from (10) with ‘=7’ specifies that the calculation of the probability (or
reward) is required. We use the shorthand notation pmc(®, M) and pmc(®r, M) for these quantities
computed for the initial state sy of M.

b) Discrete-event controller synthesis problem. To distinguish between different concerns of the
autonomous system to be controlled, DEEPDECS organises each state s of the perfect-perception
pDTMC model from Figure[10]into a tuple

s = (z,k,t,c), (11)

where z € Z models the (internal) state of the system, k € [K] models the state of the environment,
¢ € C models the control parameters of the system, and ¢ € [3] is a “turn” flag. This flag indicates
which elements of can change in each pDTMC state:

Vs =
((t
((t
((t

We partition the pDTMC state set into states in which the system can change, states in which the

environment can change, and states in which it is the controller’s “turn” to act for simplicity, and without

loss of generality; the three types of states can be easily collapsed into one.

Finally, we assume that the outgoing transition probabilities from states (z, k, 3, ¢) € S are controller
parameters that need to be determined and are given by

—~

2, k,t,c), s = K, t',d)esS:

1 AP(s,s)>0) = K=k ANd=cANt<3) A
2N P(s,8)>0) = 2Z/=zANd=cAt/=3)A
3NP(s,8)>0) = Z=zANk=kAt=1).

(12)

Trkee! :P((z,k,3,c),(z,k,1,cl)) (13)

for all ¢ € C, where x,,.» € {0,1} for deterministic controllers or x.... € [0,1] for probabilistic
controllers, and » /o Tokee = 1.

The perfect-perception pDTMC model for the SafeSCAD system (shown in Figure is defined
in the high-level modelling language of the PRISM model checker [34]. In this language, the model of
a system is specified by the parallel composition of a set of modules. The state of a module is given
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dtmc

module Alerts // ManagedComponents
z : [0..7] init O;

[warn]  t=1 — 1:(z'=c);
endmodule

// probabilities pd,,;/. that driver attentiveness changes from level k€ {1,2,3} to level k" €{1,2, 3} given alerts z€{0,1,...,7}
0 const double pd;;p = 0.99775;

HOO~NOO~WNR

81 const double pdss37 = 0.809;

83 module Driver // Environment
84 k : [1..3] init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)

86 // driver attentiveness changes from level k€ {1,2,3} to level k' €{1,2, 3} given alerts z€{0,1,...,7}
87 [monitor] t=2 A k=1 A z=0 — pdi10:(k'=1) + pdi20:(k'=2) + pdi30:(k'=3);

110  [monitor] t=2 A k=3 A z=7 — pds17:(k'=1) + pdsa7:(k'=2) + pdss7:(k'=3);
111 endmodule

112

113 const int xp; // alerts to be issued when driver is found attentive (k = 1)

114 const int xs3; // alerts to be issued when driver is found semi-attentive (k = 2) 132

115 const int x3; // alerts to be issued when driver is found inattentive (k = 3) 133 // risk when driver is not attentive
116 134 rewards " risk”

117 module PerfectPerceptionController 135  [monitor] k=1: 0; // no risk
118 ¢ : [0..7] init O; 136 [monitor] k=2: 1; // low risk
119 137 [monitor] k=3 : 4; // high risk
120  [decide] t=3 A k=1 — 1:(c'=x1); 138 endrewards

121 [decide] t=3 A k=2 — 1:(c'=x2); 139

122 [decide] t=3 A k=3 — 1:(c'=x3); 140 // driver nuisance caused by alerts
123 endmodule 141 rewards "nuisance”

124 142 [monitor] z=1: (k=1)76:2;

125 module Turn 143 [monitor] z=2: (k=1)73:1;

126 t: [1..3] init 1; 144 [monitor] z=3 : (k=1)78:3;

127 145  [monitor] z=4 : (k=1)710:3;
128  [warn]  true — 1:(t'=2); 146  [monitor] z=5 : (k=1)?16:5;
129 [monitor] true — 1:(t'=3); 147  [monitor] z=6 : (k=1)711:4;
130  [decide] true — 1:(t'=1); 148  [monitor] z=7 : (k=1)720:6;
131 endmodule 149 endrewards

Figure 11: Perfect-perception pDTMC model of the SafeSCAD system. The model states are tuples
(z,k,t,c) € [7) x [3]% x {0,1,...,7} with the semantics from (TT). The Alerts module is responsible
for warning the driver by “implementing” the controller-decided alerts ¢. The Driver module models
the driver attentiveness level k, which is monitored every 4s; the probabilities of transition between
attentiveness levels depend on the combination of alerts z in place. The control parameters z1, z2, x3 €
{0,1,...,7} are binary encodings of the alerts to be activated for each of the three driver attentiveness
levels, e.g., 3 = 5 = 101y corresponds to a deterministic-controller decision to have the optical
alert active, the acoustic alert inactive, and the haptic alert active when the driver is inattentive. The
reward structures from lines 134—-138 and 141-149 quantify the risk and driver nuisance associated
with the different driver attentiveness levels and alert combinations, respectively. The expressions
‘(k = 1)?value; : valuey’ from lines 142—148 evaluate to the larger value; if the driver is attentive (i.e.,
k = 1), and values otherwise.

by a set of finite-range local variables, and its state transitions are specified by probabilistic guarded
commands that change these variables:

[action] guard — ey : update; + es : updatey + ... + ey, : update y; (14)
In this command, guard is a boolean expression over the variables of all modules. If guard evaluates

to true, the arithmetic expression e;, i € [m], gives the probability with which the update; change of the
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module variables occurs. When action is present, all modules comprising commands with this action
have to synchronise, i.e., to perform one of these commands simultaneously.

With this notation introduced so far, the controller synthesis problem for the perfect-perception
system is to find the set of Pareto-optimal parameters which ensure that the pDTMC satisfies
ny > 0 PCTL-encoded constraints of the form in (10),

and Pareto-optimises ny > 1 PCTL-encoded objectives of the form

Oj ::= maximise pmc(®;, M) | minimise pmc(®;, M) | maximise pmc(Pg;), M |

minimise pmc(®rj, M) (16)

where i € [n1] and j € [na].

For the SafeSCAD system, the controller requirements comprise two constraints that limit the max-
imum expected risk and driver nuisance accrued over a 45-minute driving trip, and two optimisation
objectives requiring that the same two measures are minimised:

Cl . RrgislkOO [C SQOOO]

02 . Rnuisa ncg: [C§2000]

<6x10
[C§2000]

i 17
O : minimise Rf?k (17)

Os : minimise RMUsance[C<2000]

where each occurrence of the PCTL reward operator R is annotated with the name of the reward
structure from Figure it refers to (i.e., ‘risk’ of ‘nuisance’). The 2000 time- steps from the PCTL
cumulative reward properties correspond to the 45 minutes of the journey: verifying the driver state
every 4s requires 667 verifications over 2667s, and each verification is modelled by three pDTMC
time-steps, one for the monitoring of the driver state, one for the controller to decide the appropriate
alerts for the observed state, and one for the decided alerts to be issued in order to warn the driver.

¢) Model augmentation. The controller of an autonomous system with deep-learning perception
does not have access to the true value k of the environment state from (f1). Instead, DEEPDECS
controllers need to operate with an estimate k£ € [K] of this true value, and with the results v =
(v1,v2,. .., vy) € B" of n > 0 verification techniques (2) applied to the DNN and its input that produced

the estimate k. As such, the states $ of a DEEPDECS DNN-perception pDTMC model
M = (S, 5, P, L, R) (18)

are tuples that extend (1) with k£ and v:

§=(z,k k,v,t,c). (19)

To provide a formal definition for the derivation of the DEEPDECS DNN-perception pDTMC from the
perfect-perception pDTMC, we use the notation s(s) = (z, k, t, ¢) to refer to the element from Z x [K]x
[3] x C that corresponds to a generic element corresponding to 5 € Z x [K]? x B™ x [3] x C. With
this notation, the components of the pDTMC M are obtained from the perfect-perception pDTMC
M = (S, s0, P, L, R) of the same autonomous system and the probabilities (7) as follows:

S={3eZx[K>xB"x[3]xC|s(5)eS} (20)

S0 = (20, ko, ko, true, . .., true, tg, co), (21)
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where (z, ko, to, co) = so; and, for any states § = (z, k., k,v,t,¢), & = (2, K, k', v/ ,¢',¢) € S,

A~ ~

P(s(3),5(3)), it t =1 K, )= (k,v)
P(5(3),5(3)) - sy if =2
P(3,§) = T eets ift=3 A KK 1) (22)
= (z,k, k,v,1)
0, otherwise

where z_; ., are controller parameters associated with state pairs ((z, &, k,v,3, ), (z, k, k,v,3, d)) €
5% such that =_;, . € {0,1} for deterministic controllers or z_; , € [0,1] for probabilistic controllers,
and Y, cc @4, = 1. Finally, for any state § € S,

L(3) = L(s(3)), (23)

(V5,8 € S:i(5,8) = u(s(5),5(5)))} (24)

The following result shows that the DEEPDECS module augmentation produces a valid pDTMCE]
and Figure (12| depicts this pDTMC for the SafeSCAD system (for the scenario when the verification
method verif, from (3) was used for the DNN uncertainty quantification).

Theorem 1. The tuple with the elements defined by (24) is a valid pDTMC that satisfies the
following variant of (12):

<
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25
Z.d)=(z,¢) ANt =3) A (25)
ZKL R V) = (z,k:,/;:,v) At = 1).

Importantly, the next result shows that the controller decisions do not depend on the true state & of
the environment.

Theorem 2. For any (z, k1, k,v,3,¢), (2, ks, k,v,3,¢) € S and any control parameters ¢ € C,

]5((2, k1, ]AC, v,3,¢), (2, ki, ]2:, v,1,c))
= ]5((2, ko, 12:, v,3,¢), (2, ke, l%, v,1,c)). (26)

Finally, the following theorem and its corollaries prove that for each (probabilistic) discrete-event
controller that satisfies constraints and Pareto-optimises objectives for the autonomous sys-
tem with DNN perception there is an equivalent (probabilistic) discrete-event controller for the au-
tonomous system with perfect perception, but the converse does not hold.

Theorem 3. Letx and z be valid instantiations of the perfect-perception controller parameters {xzkcc/ €
[0, 1] \ (3k € [K].(z,k,3,¢c) € S) A ¢ € C} from and of the DNN-perception controller parameters
{21000 €10,1] | 3k € [K].(2,k,k,v,3,c) € S) A ' € C} from [@2), respectively. Also, let M, and M

5The theorem proofs are provided in Appendix@
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dtmc

module Alerts // ManagedComponents
z : [0..7] init O;

[warn] t=1 — 1:(z'=c);
endmodule

// probabilities pd ;.. that driver attentiveness changes from level k€ {1,2,3} to level k' €{1,2,3} given alerts z€{0,1,...,7}
const double pd;ip = 0.99775;

HOoO~NOOA»WNR

o

81 const double pd3s7 = 0.809;
82

83 // probabilities Phiy
84 const double piifnise = eq. (7)

that DNN (mis)classifies the driver state k as J when the online verification result is vy

101 const double p3sire = eq. (7)

102

103 module DriverWithDNNPerception // EnvironmentWithDNNPerception

104  k: [1..3]init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)

105  k: [1..3] init 1; // DNN-predicted driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)

106 v; : bool init false;

107

108  // driver attentiveness changes from level k to true level k¥’ and DNN-predicted level K’ given alerts z

109  [monitor] t=2 A k=1 A z=0 — pdlm~p11fa|se:(k':1)&(|;’:l)&(v1':false) + pdlm~p11tme:(k':1)&(l§’:1)&(v1’:true) +

110 Pdlw'Plzfalse5(k':1)&([<’:2)&(V1':fa|se) + Pdl1(1'P12m.e1(k':1)&(l:<':2)&(v1':tl‘ue) +
111 pd1m~p13;a|5e:(k':l)&(lf':3)&(v1':false) + pd110-plgtme:(k':l)&(lf':3)&(v1’:true) +
112 pd120-P21fatse: (k' =2)&(k'=1)&(v1'=false) + pdi20-pa1true:(k'=2)&(k'=1)&(v1'=true) +
113 pd12(.-pgzmse:(k':2)&(l§':2)&(v1’:false) + pd121)'p22true:(k':2)&(5':2)&(vl':tl‘ue) —+
114 pd120-p2sfaise: (k'=2)&(k'=3)&(v1'=false) + pdi20-p2strue:(k'=2)&(k'=3)&(v'=true) +
115 Pd130-P31fatse: (k' =3)&(k'=1)&(v1'=false) + pdi30-psitrue:(k'=3)&(k'=1)&(v1'=true) +
116 pdlg()~p32f3|seZ(k':3)&(l§’=2)&(v1Y=fa|se) + pd130~p;mtmeZ(k'=3)&(t<'=2)&(V1’=tl‘ue) +
117 pd130-p33faise: (k'=3)&(k'=3)&(v1'=false) + pdi30-p3strue:(k'=3)&(k'=3)&(v1'=true);

325 endmodule
326

327 const int Xifse; // alerts to be issued when driver is classified attentive (l} = 1) and verification result is false

332 const int x3true; // alerts to be issued when driver is classified inattentive (l:" = 3) and verification result is true
333

334 module DNNPerceptionController

335 c: [0.7] init O;

336

337  [decide] t=3 A k=1 A =i — 1:(c'=Xifalse);

342  [decide] t=3 A k=3 A vi — 1:(c'=X3true):
343 endmodule

344

345 module Turn

351 endmodule

Figure 12: DNN-perception pDTMC model of the SafeSCAD driver-attentiveness management sys-
tem for the scenario when a single DNN verification method is used to distinguish between “verified”
(v1 = true) and “unverified” (v; = false) DNN predictions of the driver’s attentiveness level. Lines 103—
111 show how all combinations of true (k) and DNN-predicted (k') driver attentiveness levels can be
reached from the attentive driver state (k = 1) when no alerts are used (¢ = 0). The six-parameter
deterministic controller decides a combination of alerts ¢ for each pair of DNN-predicted driver aten-
tiveness level k& and online DNN verification result v; (lines 339-344). The Switch module and the two
reward structures from the pDTMC in Figureare omitted for brevity.

be the instances of the perfect-perception pDTMC M and DNN-perception pDTMC M corresponding
to the controller parameters x and &, respectively. With this notation, we have
pme(®, Mz) = pme(®, M), (27)

and

~

pmc(Pr, Mz) = pme(Pr, M), (28)
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for any (quantitative) PCTL state formula ® and reward state formula oy if and only if

Lzkee = Z Z Priv® zkvee (29)

l%e[K] veBn
forall (z,k,3,c) € Sandd € C.

Properties and imply that any constraint is either satisfied or violated by both M,
and /\?li (since the two DTMCs yield the same value for the system property associated with the
constraint). Likewise, M, and /\?l@ are guaranteed to achieve the same value for the system property
associated with any optimisation objective (16).

Corollary 1. For any combination of constraints and optimisation objectives for which there
exists a probabilistic DNN-perception controller that satisfies the constraints, there exists also a prob-
abilistic perfect-perception controller that satisfies the same constraints and yields the same values for
the PCTL properties from the optimisation objectives.

Corollary 2. There exist an infinite number of combinations of constraints and optimisation ob-
jectives for which there exists a probabilistic perfect-perception controller that satisfies the con-
straints, and no DNN-perception controller exists that satisfies the constraints and yields the same
values for the system properties from the optimisation objectives.

Corollary [2| shows that the decision-making capabilities of infinitely many perfect-perception con-
trollers cannot be replicated by DNN-perception controllers. While this does not indicate how many of
these practically unachievable controllers satisfy constraints and Pareto-optimise objectives (16),
the proof of the corollary provides a hint about this by showing that DNN-perception controllers do not
exist for large a,.~ values, i.e., for scenarios when the perfect-perception controller decides to use a
specific configuration ¢’ with high probability. Intuitively, these scenarios are highly relevant, i.e., many
perfect-perception controllers with no equivalent DNN-perception controllers are likely to be Pareto-
optimal. For instance, the perfect-perception controller used for the mobile robot application from the
next section decides that the robot should mostly or even always wait when a collision with another
mobile agent would otherwise occur. This line of reasoning also implies that deterministic perfect-
perception controllers are likely to not have equivalent (probabilistic or deterministic) DNN-perception
controllers.

Stage 3: Controller synthesis. The controller synthesis problem for the DNN-perception system in-
volves finding instantiations & of the DNN-perception controller parameters for which the pDTMC M
from satisfies the constraints and is Pareto optimal with respect to the optimisation objec-
tives (16). Solving the general version of this problem precisely is unfeasible. However, metaheuristics
such as multi-objective genetic algorithms for probabilistic model synthesis [7,, 24] can be used to
generate close approximations of the Pareto-optimal controller set. Alternatively, exhaustive search
can be employed to synthesise the actual Pareto-optimal controller set for systems with determinis-
tic controllers and small numbers of controller parameters, or—by discretising the search space—an
approximate Pareto-optimal controller set for systems with probabilistic controllers.

For the SafeSCAD system, the DNN verification methods verif,; and verif, from (3) and (@) were
used in all possible combinations (i.e., alone, together, and neither) in the DEEPDECS DNN un-
certainty quantification stage. Figure [13| compare the controller Pareto fronts obtained for all these
combinations to the Pareto front associated with the perfect-perception model from Figure

The search space (8'2 controller parameter combinations when both DNN verification methods
are used) is very large. As such, an exhaustive search to determine the Pareto-optimal controllers
is infeasible. Therefore, the probabilistic model synthesis tool EvoChecker [24], which adopts multi-
objective genetic algorithms, was employed to generate close approximations of the Pareto-optimal
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Figure 13: Pareto front associated with the set of Pareto-optimal SafeSCAD controllers

controllers. The Pareto fronts, see Figure [13show that the inclusion of verification methods achieves
Pareto-optimal controllers closer to the perfect-perception Pareto fronts. Furthermore, the knee point

of the verif; and verif; and verifs fronts are closest to the knee point of the perfect DNN front. These
two fronts share a similar frontier in general.
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5 Safe-SCAD Demonstrator Evaluation

We conducted a user study to evaluate the integrated Safe-SCAD demonstrator system. The evalua-
tion is structured around the following research questions:
* RQ1: How does Safe-SCAD affect driver takeover reaction time?

* RQ2: How does Safe-SCAD affect driver stress and cognitive workload?

+ RQ3: What are driver perceptions (e.g., safety, disruptiveness, and urgency) about Safe-SCAD?

Figure 14: The driving simulator setup for the user study.

5.1 Apparatus and Data Collection

The study was conducted using the SimXperience Stage 5 Full Motion Racing Simulator (Figure [14).
The virtual driving environment was simulated using CARLA [15] and projected on a 55-inch display
placed about 63 inches away from the driver’s seat. A 9.7-inch tablet display was mounted on the right
side of the simulator as the infotainment system. Participants could switch between the automated
and manual driving modes by press a button on the steering wheel (see Figure[14). In the automated
mode, the simulated vehicle was equipped with SAE Level 3 automation and could issue TORs (350 Hz
acoustic with 75 ms duration) to ask the driver to resume the control if it was not able to handle a
situation by itself. In the manual driving mode, participants could control the vehicle via the steering
wheel and pedals.

In this study, we collected drivers’ psychophysiological, vehicle-related metrics, workload, and per-
ceived safety. We used a Shimmer3+ wearable device to measure the driver’s heart rate (PPG) and
galvanic skin response (GSR) signals with a sampling rate of 256 Hz. Heart rate variability (the time
elapsed between two successive R-waves) from PPG and maximum and mean phasic components
were calculated as the objective metrics reflecting cognitive load variation and stress, respectively.
Furthermore, we installed one high resolution camera above the steering wheel to monitor the driver’'s
head and eye movement. Finally, we developed multiple APIs to forward all stream of data to iMotions
biometric platform for the real-time aggregation and synchronization.

5.2 Experimental Design
5.2.1 Independent Factors

The study utilized a within-subject design to compare the Safe-SCAD demonstrator system with a
baseline system. As illustrated in Figure |1, the Safe-SCAD system automatically triggers advisory
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(b)

Figure 15: Advisory warning modalities: (a) visual head-up-display, (b) vibrotactile.

warnings through the following process: (1) DeepTake continuously predicts driver takeover reaction
time based on the sensing data, (2) the sensitivity and robustness of DeepTake predictions are verified,
and (3) the Safe-SCAD controllers decides if an advisory warning should be triggered based on the
verified predictions. Depending on the urgency of the situation (e.g., the predicted reaction time is slow
and the verification results confirm the robustness of predictions), multiple warning modalities may
be triggered simultaneously, including voice, visual head-up-display, and vibrotactile (see Figure [T5).
By contrast, the baseline system used the Wizard-of-Oz technique where the Wizard operator (i.e.,
experimenter) manually issued the warnings after observing the driver immersed in non-driving-related
tasks (NDRTSs) for certain period.

5.2.2 Dependent Measures

We used the following objective measurements and subjective feedback as dependent variables.

RQ1 questions driver takeover reaction time. We measured the time difference between the TOR
initiation and the exact moment of the driver pressing the button on the steering wheel to resume
manual control.

RQ2 evaluates driver stress and cognitive workload. We asked participants to complete the Driving
Activity Load Index (DALI) [49], which customizes NASA-TLX for the automotive domain.

RQ3 inquires about driver perceptions. We asked participants to rate their perceived safety, disrup-
tiveness, and the urgency of advisory warnings on a 5-point Likert-type scale ranging from 1 (strongly
disagree) to 5 (strongly agree), which was adapted from the rating questionnaire used in the prior
study by Igbal et al. [30].

5.3 Procedure

Upon arrival, the participants were briefed about the study. Participants then signed an informed
consent form and completed a demographics questionnaire, followed by a 5-minute practice drive
to get familiar with the driving simulator and NDRTs. In this study, we considered three common
NDRTSs: (1) Reading a book out loud; (2) Having a conversation with the passenger; and (3) Watching
a movie displayed on the tablet. We fitted the participant with the Shimmer3+ wearable device and
calibrated the eye-tracker (which was re-calibrated at the beginning of each trial). Participants were
informed that there was no need to actively monitor the driving environments or resume the control of
the vehicle unless a TOR was issued. However, they were instructed to resume the vehicle control as
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soon as a TOR was issued, then switch back to the automated driving once the incident had passed
and continue the engagement with a NDRT. Each participant was asked to perform two experimental
drives (Safe-SCAD and baseline), each containing 6 possible takeover events (2 TORs per NDRT). At
the beginning of the drive, the participants were asked to activate the automated mode and perform
a NDRT based on the experimenter’s instructions, followed by two more NDRTs. At the end of each
drive, the questionnaire on workload (DALI) and perceived safety and urgency were administered. The
entire study took about 90 minutes.

5.4 Result Analysis

We analyzed the data collected from the user study for the proposed research questions. We set the
statistical significance level as o = 0.05.

5.4.1 Effects on Driver Takeover Reaction Time (RQ1)

Driver reaction to the hazardous situations is a critical component of road safety research. Under-
standing of driver reaction can help design safe automated vehicles and develop effective collision
warning systems. In this study the time from receiving the takeover warning to the moment of relin-
quishing the vehicle control is considered reaction time. Thus, analysis of reaction time is an essential
approach to gauge the effectiveness of the proposed method.

The descriptive analysis on the reaction time (see Fig displays that driver’s response through-
out the Safe-SCAD trial (Mean=0.695sec, SD=0.34) was slightly better than the baseline (Mean=0.88,
SD=0.37). In order to test the RQ1, we conducted t-test on the reaction time obtained in each experi-
mental condition (baseline, and Safe-SCAD method) to see if there is difference among the methods.
The results of the t-test (¢(46) = —1.77, p = 0.081) showing no-significant difference between the two
groups.
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Figure 16: Results of reaction time w.r.t each trial.

5.4.2 Effects on Driver Stress and Cognitive Workload (RQ2)

We also analyzed the participants’ subjective rating on DALI, which includes six dimensions of work-
load as shown in Figure ANOVA analysis found that there were no significant effects on any
workload dimensions. However, on average Safe-SCAD required more visual, auditory, tactile, and
attention demand from the participants than the baseline. Furthermore, Safe-SCAD shows a much
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Figure 17: Results on DALI ratings about workload.

higher level of perceived interference (disturbance) than the baseline, but a similar level of situational

stress.

5.4.3 Driver Perceptions (RQ3)
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Figure 18: Results on driver perceived safety, disruptiveness, and urgency of advisory warnings.

Figure shows the survey results on drivers’ perceived safety, disruptiveness, and urgency of
advisory warnings. The data does not show a significant difference between Safe-SCAD and the
baseline. However, participants did report that Safe-SCAD was more disruptive of their non-driving
tasks and its warnings appeared more urgent. Yet, Safe-SCAD was also perceived as making driving

safer.

In the post-session interview, two participants indicated that they preferred Safe-SCAD, as it was
more convenient and informative, while the other two indicated their preference for the baseline as
Safe-SCAD was more disruptive. Yet, all four participants noted that Safe-SCAD was more useful
during driving and three of the four participants noted Safe-SCAD was more effective during takeover

requests.
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