
Safe-SCAD:
Safety of shared
control in
autonomous
driving

DEMONSTRATOR
PROJECT
Final report

FEBRUARY 2022

Safe-SCAD: Safety of Shared Control in Autonomous Driving

Final Technical Report

February 2022

Project Team

Lu Feng, Erfan Pakdamanian, Shili Sheng and Kayla Boggess
University of Virginia, USA

Corina Păsăreanu, John Grese, and Ravi Mangal
Carnegie Mellon University, USA

Radu Calinescu, Calum Imrie, Misael Alpizar Santana, Gricel Vázquez, Naif Alasmari, Emad Alharbi
and Mario Gleirscher
University of York, UK

1

Executive Summary

International standards classify automated driving systems on a six-level scale, from no automation at
Level 0 to full automation at Level 5. Despite huge R&D budgets and much hype over the past decade,
fully autonomous (Level 5) cars are unlikely to become available to the general public any time soon.
In contrast, cars providing Level 2 (i.e., partial) automation can be purchased from manufacturers
including Tesla, Nissan and BMW; and the approval of Level 3 (i.e., conditional automation) and 4 (i.e.,
high automation) cars is being considered by regulators worldwide.

A critical requirement for vehicles operating at autonomy Levels 2 and 3 is that a user resides in the
driver’s seat and is sufficiently attentive to be able to share the control of the car with the automated
driving system. Although Level 4 autonomous vehicles do not rely on human support, they may still
issue timely requests for human intervention (e.g., when they approach traffic situations they were not
designed to handle), performing a minimum-risk manoeuvre (e.g., stopping the car safely) if their user
does not respond.

However, drivers find it very challenging to remain attentive when in charge of vehicles with au-
tomated driving systems, as shown by accidents involving both Level 2 autonomous cars used by
regular drivers, and cars with higher autonomy levels tested by professional safety drivers. To address
this challenge, recent regulations—such as the UN regulation on the approval of vehicles with auto-
mated lane keeping systems—advocate the use of autonomous systems capable of detecting driver
inattentiveness and of issuing automated alerts to mitigate it.

The Assuring Autonomy International Programme demonstrator project ‘Safe-SCAD: Safety of
Shared Control in Autonomous Driving’ has developed a proof-of-concept driver attentiveness man-
agement system for this purpose. The Safe-SCAD system comprises a deep neural network (DNN)
responsible for predicting the driver control-takeover behaviour, methods for verifying this DNN, and a
discrete-event controller that issues optical, acoustic and/or haptic driver alerts based on the predic-
tions of the DNN and the results of its online verification. This report describes the development and
integration of the SafeSCAD components, and the testing of the proof-of-concept SafeSCAD solution
in a driving simulator at the University of Virginia.

Developed with input from project partner Toyota Info Tech labs, the proof-of-concept SafeSCAD
solution shows that intelligent driver-attention management systems have the potential to improve the
safety of shared-control automated driving. Additionally, the research carried out to develop this solu-
tion has led to two important insights that are applicable to a broad range of autonomous systems. The
first insight is that formal analysis techniques for neural networks can be used to quantify the aleatory
uncertainty of multiclass deep neural network classifiers within the operational design domain of their
autonomous systems. Second, the project showed that the use of a combination of design-time and
online verification of neural networks enables the synthesis of conventional discrete-event controllers
guaranteed to satisfy key safety, dependability and performance requirements of autonomous sys-
tems, and to be Pareto optimal with respect to a set of optimisation objectives.

2

1 Introduction

Ensuring and assuring the safety of shared control in autonomous driving is very challenging due to
the uncertainties associated with measuring the level of situational awareness of safety drivers while
not in control of the vehicle, and with the mapping of such measures to control hand-back times and
likelihood of success. In this demonstrator project, we extended, adapted and integrated our previous
research and the latest advances from human behaviour and cognitive modelling, verification of deep
neural networks, and automated controller synthesis to tackle these challenges. We used an advanced
semi-autonomous driving simulator to deliver methods for ensuring and assuring the safety of shared
control in autonomous driving, and a demonstrator that leverages these methods. The project has
made contributions to the AAIP Body of Knowledge, in the areas of shared autonomy/human-machine
interaction, verification of machine learning, verification of deciding requirements, and implementation
of decision making elements.

Our project, titled “Safe-SCAD: Safety of shared control in autonomous driving,” has addressed
the following critical barrier about control handover in shared-control autonomous systems: if (semi-)
autonomous cars have to hand (back) control to a safety driver, how can it be ensured and assured that
the human has sufficient situational awareness to be able to take over control safely and effectively?
The project has pursued five concrete objectives:

• Objective 1: To develop deep-learning based methods for modeling and predicting of driver
takeover behavior, using multi-modal sensing data of vehicles and driver biometrics (e.g., eye-
tracking, heart rate, galvanic skin response).

• Objective 2: To develop methods for the verification of the deep neural networks from Objective
1, in order to guarantee (i.e., to provide assurance evidence for) the bounds of safety drivers’
behaviour.

• Objective 3: To develop methods and assurance evidence for the stochastic modelling of the
safety driver - autonomous car system, and for the synthesis of controllers capable of maintaining
suitable levels of driver situational awareness (e.g., by using audio, vibration and light stimuli to
improve human alertness).

• Objective 4: To develop a proof-of-concept demonstrator system that uses the methods and as-
surance evidence from Objectives 1-3 and the UVA semi-autonomous driving testbed. Figure 1
shows an overview of the developed demonstrator system.

Figure 1: Overview of the Safe-SCAD demonstrator system.

3

• Objective 5: To contribute methods for ensuring and assuring the safety of robotics and au-
tonomous systems (RAS) ‘Handover’ to the AAIP BoK, and to inform the regulatory community
on these advances.

The results achieved by the project for Objectives 1–4 are described in Sections 2–5, with further
technical detail provided in Appendixes A–D.

All the project deliverable, including the BoK contributions for Objective 5, are made available at
https://drive.google.com/drive/folders/1RKtESQhvXk-9Qr-CVyiiO2Jrp17aVTBK?usp=sharing.

4

https://drive.google.com/drive/folders/1RKtESQhvXk-9Qr-CVyiiO2Jrp17aVTBK?usp=sharing

2 Prediction of Driver Takeover Behavior using Multimodal Data

2.1 Motivation and Background

Automated vehicles (AVs) promise a future where drivers can engage in non-driving tasks without
hands on the steering wheels for a prolonged period. In Level 3 of autonomy (i.e., conditionally auto-
mated driving), as defined by the Society of Automotive Engineers (SAE international [12]), the driver
does not need to continuously monitor the driving environment. Nevertheless, due to current technol-
ogy limitations and legal restrictions, AVs may still need to handover the control back to drivers occa-
sionally (e.g., under challenging driving conditions beyond the automated systems’ capabilities) [40].
In such cases, AVs would initiate takeover requests (TORs) and alert drivers via auditory, visual, or
vibrotactile modalities [44, 54, 46] so that the drivers can resume manual driving in a timely manner.
However, there are challenges in making drivers safely take over control. Drivers may need a longer
time to shift their attention back to driving in some situations, such as when they have been involved
in NDRTs for a prolonged time [56] or when they are stressed or tired [23]. Even if TORs are initiated
with enough time for a driver to react, it does not guarantee that the driver will safely take over [41].
Besides, frequent alarms could startle and increase drivers’ stress levels leading to detrimental user
experience in AVs [47, 33, 35]. These challenges denote the need for AVs to constantly monitor and
predict driver behavior and adapt the systems accordingly to ensure a safe takeover.

The vast majority of prior work on driver takeover behavior has focused on the empirical analysis
of high-level relationships between the factors influencing takeover time and quality (e.g., [43, 57, 17,
20]). More recently, the prediction of driver takeover behavior using machine learning approaches
has been drawing increasing attention. However, only a few studies have focused on the prediction
of either takeover time [36, 3] or takeover quality [5, 14, 16, 18]; and their obtained accuracy results
(ranging from 61% to 79%) are insufficient for the practical implementation of real-world applications.
This is partly due to the fact that takeover prediction involves a wide variety of factors (e.g., drivers’
cognitive and physical states, vehicle states, and the contextual environment) that could influence
drivers’ takeover behavior [55].

2.2 Our Approach

To address the aforementioned challenges, we developed a novel approach, named DeepTake, to
provide reliable predictions of multiple aspects of takeover behavior, including (1) takeover intention
– whether the driver would respond to a TOR; (2) takeover time – how long it takes for the driver to
resume manual driving after a TOR; and (3) takeover quality – the quality of driver intervention after
resuming manual control.

As illustrated in Figure 2, DeepTake considers multimodal data from various sources, including
driver’s pre-driving survey response (e.g., gender, baseline of cognitive workload and stress levels),
vehicle data (e.g., lane position, steering wheel angle, throttle/brake pedal angles), engagement in
NDRTs, and driver biometrics (e.g., eye movement for detecting visual attention, heart rate and gal-
vanic skin responses for the continuous monitoring of workload and stress levels). This data can
easily be collected in AVs’ driving environment. For instance, all of the driver biometrics utilized in
DeepTake can be captured by wearable smartwatches and deployed eye-tracking systems. The mul-
titude of sensing modalities and data sources offer complementary information for the accurate and
highly reliable prediction of driver takeover behavior. The collected multimodal data are pre-processed
followed by segmentation and feature extraction. The extracted features are then labeled based on the
belonging takeover behavior class. In our framework, we define each aspect of takeover behavior as
a classification problem (i.e., takeover intention as a binary classes whereas takeover time and quality
as three multi-classes). Finally, we built DNN-based predictive models for each aspect of takeover

5

behavior. DeepTake takeover predictions can potentially enable the vehicle autonomy to adjust the
timely initiation of TORs to match drivers’ needs and ultimately improve safety.

Below, we describe the detailed steps of the DeepTake approach.

1. Data Collection: we collect multimodal data such as driver biometrics, pre-driving surveys, types
of engagement in non-driving related tasks (NDRTs), and vehicle data. Collecting multimodal
data copes with the main drawback and inability to provide the underlying complicated state of
the driver. As driving is a dynamic task and could be impacted by internal and external factors,
multiple physiological data streams were used. However, DeepTake can be adjusted to fit the
data entry.

2. Pre-processing: the collected multimodal data are preprocessed followed by segmentation and
feature extraction. Due to sensitiveness of physiological wearables, intensive preprocessing
should be applied to remove motion artifacts and extract meaningful information. The extracted
features are then labeled based on the belonging to takeover behavior class.

3. Labelling: DeepTake tends to cover multiple aspects of takeover behavior to provide more re-
liable outcomes. We define each aspect of takeover behavior as a multi-class classification
problem (i.e., takeover intention as a binary class whereas takeover time and quality as three
multi-classes). Thus, we labeled takeover time as the period from the moment the takeover re-
quest alarm is triggered to the moment a participant initiates regaining control by pressing the
two embedded buttons on the steering. This period defines the takeover time for each participant
which categorized as Low, Medium, and High. In addition, we consider a motivating scenario
where the driver needs to take over control of the vehicle and swerve away from an obstacle
blocking the same lane; meanwhile, the vehicle should not deviate too much from the current
lane, risking crashing into nearby traffic. Thus, takeover quality was labeled as the lateral devi-
ation from the current lane. we label the feature vectors into three classes of takeover quality:
“low” or staying in a lane when the deviation is smaller than 3.5 meters, “medium” or maneuver
the obstacle when the deviation is grater than 7 meters, or “high” or maneuver safely when the
deviation is between 3.5 and 7 meters.

4. Modeling: DeepTake utilizes a feed-forward deep neural network (DNN) with a mini-batch
stochastic gradient descent. The DNN model architecture begins with an input layer to match the
input features, and each layer receives the input values from the prior layer and outputs to the
next one. Although we used 3classes of takeover time and quality, the output layer of DNN model

Figure 2: DeepTake uses data from multiple sources (pre-driving survey, vehicle data, non-driving re-
lated tasks (NDRTs) information, and driver biometrics) and feeds the preprocessed extracted features
into deep neural network models for the prediction of takeover intention, time and quality.

6

Takeover
time

D
riv

er
Sy

st
em

Conversation
Cellphone
Reading
Arithmetic

Incident

Switch
Control

Automated Driving Manual Driving

NDRT
State

Transition

Takeover

Driving

Automated
Driving

Start

NDRT
Sc

en
ar

io

t

Takeover
request (TOR)

Figure 3: A schematic view of an example of a takeover situation used in our study, consisting of:
1) takeover timeline associated with participants’ course of action; 2) system status; and 3) takeover
situation. The vehicle was driven in the automated mode to the point after the TOR initiation and
transitioning preparation period. The ego vehicle is shown in red and the lead car is white. When the
Ego vehicle reaches its limits, the system may initiate (true alarm) or fail (no alarm) to initiate the TOR,
and the driver takes the control back from the automated system.

can be customized for the multi-class classification. In fact, we also demonstrated the capabil-
ity of DeepTake in predicting 5-class takeover time. We evaluate the DNN-model performance
against multiple state-of-art models.

2.3 Evaluation

We validate DeepTake framework feasibility using data collected from a driving simulator study. The
driving scenarios comprised a 4-lane rural highway, with various trees and houses placed alongside
the roadway. We designed five representative situations where the AVs may need to prompt a TOR to
the driver, including novel and unfamiliar incidents that appear on the same lane. Figure 3 displays an
example of a takeover situation used in our study. The designed unplanned takeovers let participants
react more naturally to what they would normally do in AVs, participants’ reaction times are in de-
tectable categories. In other words, participants have no previous knowledge of incident appearance,
which might happen among other incidents requiring situational awareness and decision-making.

There are a number of potential methods to address reliability of the models. Each of these meth-
ods shows a different aspect of the model. We evaluate the performance of DeepTake framework by
multiple metrics. Applying different metrics reflect the goodness of the proposed model in different
aspects. We first apply 10-fold cross-validation on training data to evaluate the performance of se-
lected features in the prediction of driver takeover intention, time and quality. We then compared the
proposed model against 6 other models using Receiver Operating Characteristic (ROC), and weighted
F1 scores. We finally use the confusion matrix to further illustrate the summary of DeepTake’s perfor-
mance on the distinction of takeover intention, time, and quality per class. The results show that Deep-
Take models significantly outperform six machine learning-based models in all predictions of takeover
intention, time and quality. Specifically, DeepTake achieves an accuracy of 96% for the binary classifi-
cation of takeover intention, 93%, and 83% accuracy for multi-class classification of takeover time and
quality, respectively. These accuracy results also outperform results reported in the existing work. We
refer to Appendix A for details of these results.

7

2.4 Implications

We believe that our human-centered DeepTake framework makes a step towards enabling a longer
interaction with none driving related tasks (NDRTs) for automated driving. DeepTake provides a new
approach to help the monitoring systems to constantly observe and predict the driver’s mental and
physical status by which the automated system can make optimal decisions and improve the safety
and user experience in AVs. Specifically, by integrating the DeepTake framework into the monitoring
systems of AVs, the automated system infers when the driver has the intention to takeover through
multiple sensor streams. Once the system confirms a strong possibility of takeover intention, it can
adapt its driving behavior to match the driver’s needs for acceptable and safe takeover time and quality.
Therefore, a receiver of TOR can be ascertained as having the capability to take over properly, other-
wise, the system would have allowed the continued engagement in NDRT or warned about it. Thus,
integration of DeepTake into the future design of AVs facilitates the human and system interaction to
be more natural, efficient and safe. Since DeepTake should be used in safety-critical applications, we
further validated it to ensure that it meets important safety requirements.

DeepTake framework provides a promising new direction for modeling driver takeover behavior to
lessen the effect of the general and fixed design of TORs which generally considers homogeneous
takeover time for all drivers. This is grounded in the design of higher user acceptance of AVs and
dynamic feedback. The information obtained by DeepTake can be conveyed to passengers as well as
other vehicles letting their movement decisions have a higher degree of situational awareness.

8

3 Verification of Deep Neural Networks

We report here on the analysis of a neural network component that was built for predicting takeover
time in the shared-control autonomous driving system. The network was trained on data collected from
a (semi-)autonomous driving simulator. The network is a fully-connected network with three hidden
layers and ReLU activation functions. More details about the work can be found in [31].

We report results for the following types of analysis: attribution and trust in neural networks, formal
robustness analysis, and confidence analysis via calibration of neural networks. We further performed
work on mining properties of neural networks and transfer learning for building personalized models.
Due to space constraints, we do not describe them here but details can be found in [31].

3.1 Attribution and Trust in Neural Networks

Neural networks are essentially black-box models, which generate a prediction based on input features
and some learned weights. In critical applications, it is imperative to understand how and why the
model gives the predictions, by identifying the important features that have the highest impact on the
model predictions. We therefore designed and evaluated a framework to determine feature importance
as viewed by the model.

We examined off-the-shelf state-of-the-art methods such as SHAP [37], LIME [50] and Integrated
Gradients (IG) [51]. SHAP and Integrated Gradients are white-box techniques whereas LIME is a
black-box method for attribution analysis. Given a set of input samples, we generate an importance
vector of size, 1 × n_features per sample. We randomly selected 3000 samples and created a 3000
× n_features importance matrix. From the importance matrix, we computed the number of times a
feature was regarded as top-k important feature (with the respective method) and created a dictionary
where for each feature there are k values and each value signifies the number of times that feature
was regarded as kth important feature. For validation, we dropped the features that were found of less
importance, re-trained network using the same architecture, and evaluated the resulting accuracies.

3.1.1 Results

In Figure 4, for each feature, the measured importance values are plotted for the three evaluated meth-
ods (SHAP, LIME and IG). Each bar has 5 parts, demonstrating the top-5 importance values. It can be
observed that FixationSeq, FixationStart and Manualwheel are given high importance values by the
three methods, whereas ManualBrake is given a high importance value only by LIME. Some features,
such as FixationDuration, AutoWheel, RightLaneType, RangeW appear to have low importance val-
ues. Figure 5 depicts the model accuracy after dropping low-importance features. It also validates the
importance values as measured by the three methods. For example, ManualWheel and FixationSeq
are important features hence dropping those results in lower accuracy. Dropping FixationDuration,
RangeW and AutoWheel results in a model with comparable accuracy, demonstrating that they are
indeed of low importance. The results indicate that SHAP and IG have similar performance, with LIME
giving some outliers. The experiments indicate that existing attribution techniques can indeed be used
to understand the model behaviour and furthermore can be used to optimize the model (by dropping
some features that have little influence over model predictions).

3.2 Clustering for Robustness Analysis

Robustness analysis of neural networks aims to formally verify that small perturbations to inputs do
not modify the network predictions. One approach for robustness analysis is to use label guided k-
means clustering [25] on the training data to find regions in the input space where the model prediction
does not change, and the model is thus potentially robust to input perturbations. Model robustness in

9

Figure 4: Distribution showing the number of times a feature was regarded top-5 important

Figure 5: Bar plot depicting the accuracy of models trained with dropped features

these regions is then further validated using formal methods. We report here on an extension of this
clustering-based approach for robustness analysis. In particular, we investigated ways to improve the
clustering algorithm used to find the robust regions.

10

Figure 6: Clustering results

The original label guided k-means clustering algorithm often produces clusters (or regions) that
contain a single training data point. Such single point regions are not very useful for robustness
analysis since they only cover a small volume of the input space. Moreover, it increases the cost of
formal verification since model robustness has to be verified in a large number of small regions as
opposed to a small number of large regions (note that the cost of verification scales with the number
of regions). The existence of clusters with a single training data point can be attributed to the fact
that these points did not fall close to the initialized cluster centroids. To address this issue, methods
such as weighted k-means clustering, elbow method, and centroid initializations were implemented
and evaluated. For the elbow method, it was found that setting the initial number of clusters to 150
(i.e., k=150) was a good start for the clustering algorithm on our dataset.

3.2.1 Clustering Results

The results in Figure 6 show the number of regions on y-axis with each region containing ’n’ number
of points, where n is depicted on the x-axis. The 3 bars are the comparison of the clustering results of
the 3 methodologies we considered:

• unmodified label guided k-means (initial method)

• mean aggregated weighted k-means

• mean centroid initialized k-means

There are 5 categories of these clusters as represented on the x-axis with ’n’ ranging from 1 to
1000. The best case would be to have less number of regions with ’n == 1’ and the more regions with
’n >= 1000’. Out of the 3 methods, the mean-centroid initialization has the least amount of regions
with n==1 (5917 regions as compared to 9000+ regions for the other two methods.) and higher amount
of regions with ’n >= 100’. This indicates that the clustering has fewer singular point clusters. The

11

Figure 7: Comparison of max verified radius (left) and max radius (right)

weighted k-means method and the unmodified method produce similar results, so choosing the mean
centroid initialization would be more beneficial amongst the 3 methods.

3.2.2 Verification with Marabou

The regions computed with k-means clustering were passed to Marabou [32] for verification of robust-
ness. Essentially, for a region R with centroid C and radius r we use Marabou to check that all the
points in the region have the same label (and thus the model is robust – behaves consistently – in that
region). The verification results indicated that for the modified k-means clustering, it was possible to
verify larger regions. The number of ε = 0 regions for the current implementation amounted to 116
whereas the previous implementation had 464 such regions. The value ε = 0 indicates a result of
either incorrect centroid initialization or the search space being too large for Marabou to verify within
the time limit assigned (which was set to be 5 minutes per region).

The plots show the comparison of two parameters, (i) maximum verified radius; (ii) maximum
cluster radius. The comparison of the radius (bar plot on the right in figure 7) attribute shows that the
modification performed on the k-means clustering resulted in larger regions. When these regions were
put through Marabou for verification, the maximum radius verified for each class is marginally better
than the unmodified k-means methodology.

When Marabou fails to prove a property, it returns a counterexample. For the properties that we
checked, a counterexample has the form of an input that is in a region R and has label different
than the other points in the region. We performed experiments to determine if we can increase the
robustness of the model by using the counterexamples found from Marabou. The results can be found
in [31].

3.3 Calibration and Confidence

For real-world safety-critical systems, neural networks must not only be accurate and robust but they
should also indicate when they are likely to be incorrect. The formally verified safe regions described
above provide one measure of confidence for points that exist within the regions, however they are not
capable of providing confidence about points outside those regions. To add a measure of confidence

12

Figure 8: Pre-calibration reliability diagram

Figure 9: Post-calibration reliability diagram

for inputs which exist outside of the safe regions, we also investigated confidence calibration [26]. Con-
fidence calibration is concerned with the problem of predicting probability estimates representative of
the true correctness likelihood. In particular, we investigated temperature scaling, a single-parameter
variant of Platt scaling, as a simple and effective way to post-process a network such that the prob-
abilities associated with each predicted class reflect the correctness likelihood of the prediction. The
method does not change the accuracy of the network; it uses the same parameter T (temperature) to
soften the network output making the network less confident when making wrong predictions.

3.3.1 Results

Figure 8 depicts a reliability diagram which shows accuracy as a function of confidence measure for
the original, un-calibrated model. A well calibrated model would have the bars well-aligned with the
diagonal line (identity function), and will have same accuracy and confidence for a given bin. Although,
most of the bars seem to be well-aligned, we observe gaps for some confidence intervals. These gaps
illustrate low confidence of the model for samples whose prediction fall in that interval.

Figure 9 depicts the model’s output after calibration using temperature scaling. We obtain a better
calibrated model without affecting the model’s accuracy.

In the following section, we describe how to use verification and calibration results to guide the
controller synthesis with provable guarantees.

13

4 Synthesis of Safe-SCAD Controllers

The J3016 standard [45] classifies automated driving systems (ADSs) on a six-level scale, from no
automation at Level 0 to full automation at Level 5. Despite huge R&D budgets and much hype over
the past decade, fully autonomous (Level 5) cars are unlikely to become available to the general
public any time soon. In contrast, cars providing Level 2 (i.e., partial) automation can be purchased
from manufacturers including Tesla, Nissan and BMW; and the approval of Level 3 (i.e., conditional
automation) and 4 (i.e., high automation) cars is considered by regulators worldwide [10, 6, 21, 29, 52].

A critical requirement for vehicles operating at autonomy Levels 2 and 3 is that a user resides in
the driver’s seat and is sufficiently attentive to be able to share the control of the car with the ADS. At
Level 2, this human in the loop is expected to ‘complete the object and event detection and response
subtask and [to] supervise the driving automation system’, while at Level 3 the user is expected to
be ‘receptive to ADS-issued requests to intervene [. . .] and [to] respond appropriately ’ [45]. Although
Level 4 ADSs do not rely on human support, they may still issue timely requests for human intervention
(e.g., when they approach roads or traffic situations they were not designed to handle), performing a
minimum-risk manoeuvre (e.g., stopping the car safely) if their user does not respond.

In these scenarios, accidents with potentially fatal consequences (for Levels 2 and 3) and frequent
emergency stops (for Level 4) can only be avoided if the drivers are sufficiently attentive to be able to
take over the control of their vehicles [42]. However, humans find it very difficult to remain attentive
when overseeing the operation of automated and autonomous systems [11, 19, 39]. In the automotive
domain, this is amply demonstrated by accidents involving both cars with Level 2 ADS used by regular
drivers [2, 53] and cars with higher autonomy levels tested by professional safety drivers [22].

SafeSCAD proposes an approach that mitigates this problem by using a sense-understand-decide-
act (SUDA) control loop to improve driver attentiveness in shared-control autonomous driving. The
sensing component of this control loop uses an array of sensors to collect driver biometrics and vehicle
data. The understanding component uses these data and the deep neural network [48] presented
earlier in this report to predict the driver response time to a potential ADS intervention request. This
results in a classification of the driver as attentive, semi-attentive or inattentive, and guides the planning
of driver alerts by a formally verified discrete-event controller. This controller—whose development is
described next—ensures that the risk due to driver inattentiveness does not exceed a predetermined
level, and achieves Pareto-optimal trade-offs between risk level and driver nuisance.

4.1 Problem definition

Given a shared-control ADS vehicle, we assume that its driver can have one of nd ≥ 2 attentiveness
levels. The highest level (‘attentive’) corresponds to the situation in which the driver can respond timely
to a transition demand. The other levels correspond to diminished driver attentiveness and therefore to
increased risk that can be mitigated through issuing alerts to improve the driver’s attentiveness level.

We assume that the ADS can activate one or several of K ≥ 1 alerts (e.g., optical, acoustic and
haptic) as needed to improve the driver’s attentiveness. As such, the ALKS state at any point in time
is characterised by:

1. the driver attentiveness level k ∈ {1, 2, . . . ,K}, where k = 1 and k = K correspond to the driver
being ‘attentive’ and ‘inattentive’, respectively;

2. the set of active alerts a ∈ {0, 1}na , where a = (a1, a2, . . . , ana) indicates that the i-th alert is
inactive when ai = 0, and active when ai = 1.

Using the notation [K] = {1, 2, . . . ,K} and A = {0, 1}na to denote the sets of possible values for the
two components of the system state, we further assume that the following measures are defined over
the state space [K]×A:

14

1. nuisance : A × [K] → R≥0, where nuisance(a, k) represents the nuisance experienced by the
driver when the alerts a ∈ A are in use and the driver attentiveness level is k, with

nuisance((0, 0, . . . , 0), k) = 0

for all k ∈ [K];

2. risk : [K] → R≥0, where risk(k) provides a measure of the risk during time periods when the
driver attentiveness level is k ∈ [K].

Finally, we assume that timing data are available about the drivers’ transition between the at-
tentiveness levels [K], when different alert combinations are active, and at different vehicle speeds.
These data may be available from studies of driver behaviour [36, 38], experiments carried out by
autonomous vehicle manufacturers, observations of drivers who are using the deployed ADS, or a
combination thereof. Given such data, the driver attentiveness management problem is to find a com-
bination of alerts a ∈ A to use for each predicted driver attentiveness level k̂ ∈ K (i.e., attentiveness
level predicted by a deep neural network that classifies the driver attentiveness level), such that the
system

• does not exceed a predetermined level of risk,

• achieves Pareto optimality between minimising the driver nuisance and minimising the risk

over a period of T hours of driving. For additional details, please see Appendix C.

4.2 SafeSCAD controller synthesis

To solve the problem defined in the previous section, we used a new discrete-event controller synthesis
approach called DEEPDECS1 [8].

Overview. DEEPDECS uses a parametric discrete-time Markov chain (pDTMC) to model the design
space of the controller under development. The uncertainty due to the use of a deep-learning percep-
tion component within the system to be controlled and, if applicable, the uncertainty inherent to the
system and its environment are modelled by the probabilities of transition between the states of this
pDTMC. Finally, the controller synthesis problem involves finding combinations of parameter values
for which the Markov chain satisfies strict safety, dependability and performance constraints, and is
Pareto-optimal with respect to a set of optimisation objectives. These constraints and optimisation
objectives are formalised as probabilistic temporal logic formulae.

DEEPDECS derives the pDTMC underpinning its controller synthesis automatically from (i) DNN
verification results that quantify the uncertainty due to the deep-learning perception component, and
(i) an “ideal” pDTMC that models the behaviour of the controlled system assuming perfect percep-
tion (Figure 10a). The set of correct-by-construction, Pareto-optimal DEEPDECS controllers is then
synthesised by applying a combination of probabilistic model checking and search techniques to the
derived pDTMC. As shown in Figure 10b, each of these controllers operates by reacting to changes in
the system, in the DNN outputs and, unique to DEEPDECS, in the results obtained through the online
verification of each DNN input and prediction.

We detail each stage of the DEEPDECS approach and its application to the SafeSCAD problem
below.

Stage 1: DNN uncertainty quantification. This section provides a brief introduction to DNN classifier
verification, and describes the use of such verification techniques to quantify the aleatory uncertainty
of DNN classifiers.

1Deep neural network perception Discrete-Event Controller Synthesis

15

Test dataset

Verification
results

verification methods

Key

1. DNN
uncertainty

quantification

Perfect-
perception

pDTMC model

PCTL-encoded
requirements

DNN perception
component

{
2. Model

augmentation
DNN-perception
pDTMC model

3. Controller
synthesis

Pareto-optimal
controllers

DeepDECS stage

Model/software artefact

Data

verif 1 verif n

(a) DEEPDECS generates discrete-event controllers aware of the uncertainty induced by the DNN perception
component of an autonomous system in three stages. First, in a DNN uncertainty quantification stage, n ver-
ification methods are used to evaluate the DNN perception component over a test dataset representative for
the operational design domain (ODD) of the autonomous system. The verification results provide a quantifica-
tion of the DNN prediction uncertainty within the system ODD. Next, the Model augmentation stage uses these
results—and an ideal-system pDTMC model that assumes perfect perception—to assemble a pDTMC system
model that takes the DNN-induced uncertainty into account. Finally, the Controller synthesis stage uses this
pDTMC model to synthesise a set of Pareto-optimal discrete-event controllers guaranteed to satisfy the PCTL-
encoded requirements (constraints and optimisation objectives) of the system.

Online DNN
verification

DNN perception
component

DeepDECS
Pareto-optimal

controllerverif 1 verif n

(1) (2) (3)

(b) SafeSCAD driver-attentiveness management system. Data from car sensors (1) and driver biometric sensors
(2) are supplied to a DNN perception component that classifies the driver state as attentive, semi-attentive or
inattentive. The DEEPDECS controller decides when optical, acoustic and/or haptic alerts (3) should be used
to increase the driver’s attentiveness.

Figure 10: DEEPDECS controller synthesis (a), and deployment (b)

a) Verification of DNN classifiers. A K-class DNN classifier fθ is a function, composed of linear
and non-linear transformations, of the form

fθ : Rd → [K], (1)

16

where [K] denotes the set {1, . . . ,K}, and θ refers to the weights or parameter values that characterize
the linear transformations. As the results presented in this article are oblivious to the internal details
of DNNs, we will by default omit the subscript θ, and treat f as a black-box function.

DNN classifiers are learnt from data, and are not guaranteed to always classify their input correctly.
DNN verification techniques can help assess the quality of a classifier for a given input. A verification
technique has the general form

verif : (Rd → [K])× Rd → B, (2)

such that, for a classifier f ∈ Rd → [K] and an input x ∈ Rd, verif (f, x) = true if the verification
technique deems the DNN f likely to classify the input x correctly, and verif (f, x) = false otherwise.
Two examples of simple DNN verification techniques (which we use to evaluate DEEPDECS later in
the article) are:

1. Model confidence threshold—A K-class DNN classifier is practically implemented as a function
of type Rd → [0, 1]K , with each input x ∈ Rd first mapped to a discrete probability distribution
δ(x) = (p1, p2, . . . , pK) over the K classes, and the class corresponding to the highest probability
is chosen as the classifier prediction. The probability associated with a class can be interpreted
as estimating the probability that the class is the true label of x. While it has been observed that
classifiers may not be well-calibrated, i.e., the estimated correctness probabilities may be far from
the true probabilities, a number of methods have been proposed to calibrate DNN classifiers
[27]. Assuming that a classifier is well-calibrated using one of these methods, a simple DNN
verification technique is to check whether the estimate correctness probability for an input x is
greater than a fixed threshold τ for the class with the highest probability:

verif 1(f, x) =

{
true, if maxKi=1 pi ≥ τ
false, otherwise (3)

2. Local robustness certification [9]—A DNN classifier f is ε-locally robust at an input x if perturba-
tions within a small distance ε > 0 from x (measured using the �2 metric) do not lead to a change
in the classifier prediction. Accordingly, the local robustness verifier is defined by

verif 2(f, x) =




true, if ∀x′ ∈ Rd. ||x− x′||2 ≤ ε

=⇒ f(x) = f(x′)
false, otherwise

(4)

for any input x ∈ Rd.

b) Quantification of DNN perception uncertainty. The use of DNN perception introduces aleatory
uncertainty into the autonomous system since DNNs are not guaranteed to predict accurately on all
inputs. In the first DEEPDECS stage, we use a mechanism that relies on DNN verification techniques
to empirically quantify the uncertainty of the DNN outcomes.

Let X ⊂ Rd be a representative test dataset for the DNN classifier (1), i.e., a set of classifier inputs
that reflects the inputs that the autonomous system using the DNN will encounter in its ODD. For any
test input x ∈ X, let f∗(x) ∈ [K] be the label (i.e., the true class) of x, which is known since X is a test
dataset.

DEEPDECS uses n ≥ 0 DNN verification techniques verif 1, verif 2, . . . , verif n to identify subsets
of X for which the classifier is likely to achieve higher accuracy than for the entire set X.2 We use
the n verification methods to partition the test dataset X into 2n subsets comprising inputs x with the

2Note that DEEPDECS is also applicable in the special case when n = 0, i.e., when no verification techniques is used.

17

same verification results.3 Formally, for a DNN classifier f and any v = (v1, v2, . . . , vn) ∈ Bn, we define
the test data subset

Xv = {x ∈ X | verif (f, x) = v}, (5)

where verif (f, x) = (verif 1(f, x), verif 2(f, x), . . . , verif n(f, x)). We use each of these test data sub-
sets to define a K × K confusion matrix Cv such that, for any k, k′ ∈ [K], the element in row k and
column k′ of this matrix is given by the number of inputs from Xv with true class k that the DNN
classifies as belonging to class k′

Cv[k, k′] = #
{
x ∈ Xv | f∗(x) = k ∧ f(x) = k′

}
, (6)

where, for any set A, #A denotes its cardinality.
As the test dataset X is representative of the DNN inputs that the system encounters in opera-

tion, we henceforth assume that the probability that a class-k input x satisfies verif (f, x) = v and is
(mis)classified by the DNN as belonging to class k′ is given by:4

pkk′v = Pr
(
f(x) = k′ ∧ verif (f, x) = v

∣∣ f∗(x) = k) =
Cv[k, k

′]∑
v′∈Bn

∑
k′′∈[K]Cv′ [k, k′′]

. (7)

Stage 2: Model augmentation. This section provides a brief introduction to pDTMCs, defines the
discrete-event controller synthesis problem, and presents the DEEPDECS theory underlying the gen-
eration of pDTMCs that model the behaviour of, and support the synthesis of controllers for, au-
tonomous systems with deep-learning perception components.

a) Discrete-time Markov chains. DEEPDECS models the design space (i.e., the possible variants)
for the controller of an autonomous system as a pDTMC augmented with rewards.

Definition 1. A reward-augmented discrete-time Markov chain (DTMC) over a set of atomic proposi-
tions AP is a tuple

M = (S, s0, P, L,R), (8)

where S �= ∅ is a finite set of states; s0 ∈ S is the initial state; P : S×S → [0, 1] is a transition probability
function such that, for any states s, s′ ∈ S, P (s, s′) gives the probability of transition from state s to
state s′ and

∑
s′∈S P (s, s′) = 1; L : S → 2AP is a labelling function that maps every state s ∈ S to the

atomic propositions from AP that hold in that state; and R is a set of reward structures, i.e., function
pairs (ρ, ι) that associate non-negative values with the pDTMC states and transitions:

ρ : S → R≥0, ι : S × S → R≥0. (9)

When (8) includes unknown transition probabilities and/or reward values, the DTMC is termed para-
metric.

Definition 2. A reward-augmented parametric discrete-time Markov chain is a DTMC (8) comprising
one or several transition probabilities and/or rewards that are specified as rational functions5 over a
set of continuous variables [13].

DEEPDECS uses probabilistic computation tree logic (PCTL) [28, 4] extended with rewards [1]
to quantify the safety, dependability and performance properties of an autonomous system whose
controller design space is modelled as a pDTMC.

3As typical values for n are n = 1, 2, 3, there will only be a small number of such subsets.
4Formally, this results holds as #X → ∞.
5i.e., functions that can be written as fractions whose numerators and denominators are polynomial functions, e.g., 1− p

or 1−p1
p2

18

Definition 3. State PCTL formulae Φ and path PCTL formulae Ψ over an atomic proposition set AP ,
and PCTL reward formulae ΦR over a reward structure (9) are defined by the grammar:

Φ ::= true | α | Φ ∧ Φ | ¬Φ | P∼p[Ψ]
Ψ ::= XΦ | Φ U Φ | Φ U≤k Φ
ΦR ::= R∼r[C

≤k] | R∼r[F Φ]
(10)

where α ∈ AP is an atomic proposition, ∼∈ {≥, >,<,≤} is a relational operator, p ∈ [0, 1] is a
probability bound, r ∈ R+

0 is a reward bound, and k ∈ N>0 is a timestep bound.

The PCTL semantics [28, 4, 1] is defined using a satisfaction relation |= over the states of a DTMC.
Given a state s of a DTMC M, s |= Φ means ‘Φ holds in state s’, and we have: always s |= true; s |= α
iff α ∈ L(s); s |= ¬Φ iff ¬(s |= Φ); and s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2. The time-bounded until
formula Φ1U

≤k Φ2 holds for a path (i.e., sequence of DTMC states s0s1s2 . . . such that P (si, si+1) > 0
for all i > 0) iff Φ1 holds in the first i < k path states and Φ2 holds in the (i+ 1)-th path state; and the
unbounded until formula Φ1UΦ2 removes the bound k from the time-bounded until formula. The next
formula XΦ holds if Φ is satisfied in the next state. The semantics of the probability P and reward R
operators are defined as follows: P∼p[Ψ] specifies that the probability that paths starting at a chosen
state s satisfy a path property Ψ is ∼ p; R∼r[C

≤k] holds if the expected cumulated reward up to time-
step k is ∼ r; and R∼r[FΦ] holds if the expected reward cumulated before reaching a state satisfying
Φ is ∼ r. Replacing ∼ p (or ∼ r) from (10) with ‘=?’ specifies that the calculation of the probability (or
reward) is required. We use the shorthand notation pmc(Φ,M) and pmc(ΦR,M) for these quantities
computed for the initial state s0 of M.

b) Discrete-event controller synthesis problem. To distinguish between different concerns of the
autonomous system to be controlled, DEEPDECS organises each state s of the perfect-perception
pDTMC model from Figure 10 into a tuple

s = (z, k, t, c), (11)

where z ∈ Z models the (internal) state of the system, k ∈ [K] models the state of the environment,
c ∈ C models the control parameters of the system, and t ∈ [3] is a “turn” flag. This flag indicates
which elements of (11) can change in each pDTMC state:

∀s = (z, k, t, c), s′ = (z′, k′, t′, c′) ∈ S :
((t = 1 ∧ P (s, s′) > 0) =⇒ k′ = k ∧ c′ = c ∧ t′ < 3) ∧
((t = 2 ∧ P (s, s′) > 0) =⇒ z′ = z ∧ c′ = c ∧ t′ = 3) ∧
((t = 3 ∧ P (s, s′) > 0) =⇒ z′ = z ∧ k′ = k ∧ t′ = 1) .

(12)

We partition the pDTMC state set into states in which the system can change, states in which the
environment can change, and states in which it is the controller’s “turn” to act for simplicity, and without
loss of generality; the three types of states can be easily collapsed into one.

Finally, we assume that the outgoing transition probabilities from states (z, k, 3, c) ∈ S are controller
parameters that need to be determined and are given by

xzkcc′ = P ((z, k, 3, c), (z, k, 1, c′)) (13)

for all c′ ∈ C, where xzkcc′ ∈ {0, 1} for deterministic controllers or xzkcc′ ∈ [0, 1] for probabilistic
controllers, and

∑
c′∈C xzkcc′ = 1.

The perfect-perception pDTMC model for the SafeSCAD system (shown in Figure 11) is defined
in the high-level modelling language of the PRISM model checker [34]. In this language, the model of
a system is specified by the parallel composition of a set of modules. The state of a module is given

19

1 dtmc
2
3 module Alerts // ManagedComponents
4 z : [0..7] init 0;
5
6 [warn] t=1 → 1:(z’=c);
7 endmodule
8
9 // probabilities pdkk′c that driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
10 const double pd110 = 0.99775;

. . .
81 const double pd337 = 0.809;
82
83 module Driver // Environment
84 k : [1..3] init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)
85
86 // driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
87 [monitor] t=2 ∧ k=1 ∧ z=0 → pd110:(k’=1) + pd120:(k’=2) + pd130:(k’=3);

. . .
110 [monitor] t=2 ∧ k=3 ∧ z=7 → pd317:(k’=1) + pd327:(k’=2) + pd337:(k’=3);
111 endmodule
112
113 const int x1; // alerts to be issued when driver is found attentive (k = 1)
114 const int x2; // alerts to be issued when driver is found semi-attentive (k = 2)
115 const int x3; // alerts to be issued when driver is found inattentive (k = 3)
116
117 module PerfectPerceptionController
118 c : [0..7] init 0;
119
120 [decide] t=3 ∧ k=1 → 1:(c’=x1);
121 [decide] t=3 ∧ k=2 → 1:(c’=x2);
122 [decide] t=3 ∧ k=3 → 1:(c’=x3);
123 endmodule
124
125 module Turn
126 t : [1..3] init 1;
127
128 [warn] true → 1:(t’=2);
129 [monitor] true → 1:(t’=3);
130 [decide] true → 1:(t’=1);
131 endmodule

132
133 // risk when driver is not attentive
134 rewards ”risk”
135 [monitor] k=1 : 0; // no risk
136 [monitor] k=2 : 1; // low risk
137 [monitor] k=3 : 4; // high risk
138 endrewards
139
140 // driver nuisance caused by alerts
141 rewards ”nuisance”
142 [monitor] z=1 : (k=1)?6:2;
143 [monitor] z=2 : (k=1)?3:1;
144 [monitor] z=3 : (k=1)?8:3;
145 [monitor] z=4 : (k=1)?10:3;
146 [monitor] z=5 : (k=1)?16:5;
147 [monitor] z=6 : (k=1)?11:4;
148 [monitor] z=7 : (k=1)?20:6;
149 endrewards

Figure 11: Perfect-perception pDTMC model of the SafeSCAD system. The model states are tuples
(z, k, t, c) ∈ [7] × [3]2 × {0, 1, . . . , 7} with the semantics from (11). The Alerts module is responsible
for warning the driver by “implementing” the controller-decided alerts c. The Driver module models
the driver attentiveness level k, which is monitored every 4s; the probabilities of transition between
attentiveness levels depend on the combination of alerts z in place. The control parameters x1, x2, x3 ∈
{0, 1, . . . , 7} are binary encodings of the alerts to be activated for each of the three driver attentiveness
levels, e.g., x3 = 5 = 101(2) corresponds to a deterministic-controller decision to have the optical
alert active, the acoustic alert inactive, and the haptic alert active when the driver is inattentive. The
reward structures from lines 134–138 and 141–149 quantify the risk and driver nuisance associated
with the different driver attentiveness levels and alert combinations, respectively. The expressions
‘(k = 1)?value1 : value2’ from lines 142–148 evaluate to the larger value1 if the driver is attentive (i.e.,
k = 1), and value2 otherwise.

by a set of finite-range local variables, and its state transitions are specified by probabilistic guarded
commands that change these variables:

[action] guard → e1 : update1 + e2 : update2 + . . .+ em : updateN ; (14)

In this command, guard is a boolean expression over the variables of all modules. If guard evaluates
to true, the arithmetic expression ei, i ∈ [m], gives the probability with which the updatei change of the

20

module variables occurs. When action is present, all modules comprising commands with this action
have to synchronise, i.e., to perform one of these commands simultaneously.

With this notation introduced so far, the controller synthesis problem for the perfect-perception
system is to find the set of Pareto-optimal parameters (13) which ensure that the pDTMC satisfies
n1 ≥ 0 PCTL-encoded constraints of the form in (10),

Ci ::= Φi | ΦRi (15)

and Pareto-optimises n2 ≥ 1 PCTL-encoded objectives of the form

Oj ::= maximise pmc(Φj ,M) | minimise pmc(Φj ,M) | maximise pmc(ΦRj),M |
minimise pmc(ΦRj ,M) (16)

where i ∈ [n1] and j ∈ [n2].
For the SafeSCAD system, the controller requirements comprise two constraints that limit the max-

imum expected risk and driver nuisance accrued over a 45-minute driving trip, and two optimisation
objectives requiring that the same two measures are minimised:

C1 : Rrisk
≤100[C

≤2000]

C2 : Rnuisance
≤6×103 [C

≤2000]

O1 : minimise Rrisk
=? [C

≤2000]

O2 : minimise Rnuisance
=? [C≤2000]

(17)

where each occurrence of the PCTL reward operator R is annotated with the name of the reward
structure from Figure 11 it refers to (i.e., ‘risk’ of ‘nuisance’). The 2000 time- steps from the PCTL
cumulative reward properties correspond to the 45 minutes of the journey: verifying the driver state
every 4s requires 667 verifications over 2667s, and each verification is modelled by three pDTMC
time-steps, one for the monitoring of the driver state, one for the controller to decide the appropriate
alerts for the observed state, and one for the decided alerts to be issued in order to warn the driver.

c) Model augmentation. The controller of an autonomous system with deep-learning perception
does not have access to the true value k of the environment state from (11). Instead, DEEPDECS
controllers need to operate with an estimate k̂ ∈ [K] of this true value, and with the results v =
(v1, v2, . . . , vn) ∈ Bn of n ≥ 0 verification techniques (2) applied to the DNN and its input that produced
the estimate k̂. As such, the states ŝ of a DEEPDECS DNN-perception pDTMC model

M̂ = (Ŝ, ŝ0, P̂ , L̂, R̂) (18)

are tuples that extend (11) with k̂ and v:

ŝ = (z, k, k̂, v, t, c). (19)

To provide a formal definition for the derivation of the DEEPDECS DNN-perception pDTMC from the
perfect-perception pDTMC, we use the notation s(ŝ) = (z, k, t, c) to refer to the element from Z× [K]×
[3] × C that corresponds to a generic element corresponding to ŝ ∈ Z × [K]2 × Bn × [3] × C. With
this notation, the components of the pDTMC M̂ are obtained from the perfect-perception pDTMC
M = (S, s0, P, L,R) of the same autonomous system and the probabilities (7) as follows:

Ŝ = {ŝ ∈ Z × [K]2 × Bn × [3]× C | s(ŝ) ∈ S}; (20)

ŝ0 = (z0, k0, k0, true, . . . , true, t0, c0), (21)

21

where (z0, k0, t0, c0) = s0; and, for any states ŝ = (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ,

P̂ (ŝ, ŝ′) =





P (s(ŝ), s(ŝ′)), if t = 1 ∧ (k̂′, v′) = (k̂, v)

P (s(ŝ), s(ŝ′)) · pk′k̂′v′ , if t = 2

xzk̂vcc′ , if t = 3 ∧ (z′, k′, k̂′, v′, t′)

= (z, k, k̂, v, 1)

0, otherwise

(22)

where xzk̂vcc′ are controller parameters associated with state pairs ((z, k, k̂, v, 3, c), (z, k, k̂, v, 3, c′)) ∈
Ŝ2 such that xzk̂vcc′ ∈ {0, 1} for deterministic controllers or xzk̂vcc′ ∈ [0, 1] for probabilistic controllers,
and

∑
c′∈C xzk̂vcc′ = 1. Finally, for any state ŝ ∈ Ŝ,

L̂(ŝ) = L(s(ŝ)), (23)

and

R̂ = {(ρ̂, ι̂) ∈ (Ŝ → R≥0)× (Ŝ × Ŝ → R≥0) |
∃(ρ, ι) ∈ R :

(
∀ŝ ∈ Ŝ : ρ̂(ŝ) = ρ(s(ŝ))

)
∧

(
∀ŝ, ŝ′ ∈ Ŝ : ι̂(ŝ, ŝ′) = ι(s(ŝ), s(ŝ′))

)
} (24)

The following result shows that the DEEPDECS module augmentation produces a valid pDTMC,6

and Figure 12 depicts this pDTMC for the SafeSCAD system (for the scenario when the verification
method verif 1 from (3) was used for the DNN uncertainty quantification).

Theorem 1. The tuple (18) with the elements defined by (20)–(24) is a valid pDTMC that satisfies the
following variant of (12):

∀ŝ = (z, k, k̂, v, t, c), ŝ′ = (z′, k′, k̂′, v′, t′, c′) ∈ Ŝ :(
(t = 1 ∧ P (ŝ, ŝ′) > 0) =⇒ (k′, k̂′, v′, c′) = (k, k̂, v, c) ∧ t′ < 3

)
∧(

(t = 2 ∧ P (ŝ, ŝ′) > 0) =⇒ (z′, c′) = (z, c) ∧ t′ = 3
)
∧

(
(t = 3 ∧ P (ŝ, ŝ′) > 0) =⇒ (z′, k′, k̂′, v′) = (z, k, k̂, v) ∧ t′ = 1

)
.

(25)

Importantly, the next result shows that the controller decisions do not depend on the true state k of
the environment.

Theorem 2. For any (z, k1, k̂, v, 3, c), (z, k2, k̂, v, 3, c) ∈ Ŝ and any control parameters c′ ∈ C,

P̂ ((z, k1, k̂, v, 3, c), (z, k1, k̂, v, 1, c
′))

= P̂ ((z, k2, k̂, v, 3, c), (z, k2, k̂, v, 1, c
′)). (26)

Finally, the following theorem and its corollaries prove that for each (probabilistic) discrete-event
controller that satisfies constraints (15) and Pareto-optimises objectives (16) for the autonomous sys-
tem with DNN perception there is an equivalent (probabilistic) discrete-event controller for the au-
tonomous system with perfect perception, but the converse does not hold.

Theorem 3. Let x and x̂ be valid instantiations of the perfect-perception controller parameters
{
xzkcc′ ∈

[0, 1]
∣∣ (∃k ∈ [K].(z, k, 3, c) ∈ S) ∧ c′ ∈ C

}
from (13) and of the DNN-perception controller parameters{

xzk̂vcc′ ∈ [0, 1]
∣∣ (∃k ∈ [K].(z, k, k̂, v, 3, c) ∈ Ŝ) ∧ c′ ∈ C

}
from (22), respectively. Also, let Mx and M̂x̂

6The theorem proofs are provided in Appendix D.

22

1 dtmc
2
3 module Alerts // ManagedComponents
4 z : [0..7] init 0;
5
6 [warn] t=1 → 1:(z’=c);
7 endmodule
8
9 // probabilities pdkk′c that driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
10 const double pd110 = 0.99775;

. . .
81 const double pd337 = 0.809;
82

83 // probabilities pkk̂v1
that DNN (mis)classifies the driver state k as k̂ when the online verification result is v1

84 const double p11false = eq. (7)
. . .

101 const double p33true = eq. (7)
102
103 module DriverWithDNNPerception // EnvironmentWithDNNPerception
104 k : [1..3] init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)

105 k̂ : [1..3] init 1; // DNN-predicted driver status: attentive (k̂ = 1); semi-attentive (k̂ = 2); or inattentive (k̂ = 3)
106 v1 : bool init false;
107

108 // driver attentiveness changes from level k to true level k′ and DNN-predicted level k̂′ given alerts z

109 [monitor] t=2 ∧ k=1 ∧ z=0 → pd110·p11false:(k’=1)&(k̂’=1)&(v1’=false) + pd110·p11true:(k’=1)&(k̂’=1)&(v1’=true) +

110 pd110·p12false:(k’=1)&(k̂’=2)&(v1’=false) + pd110·p12true:(k’=1)&(k̂’=2)&(v1’=true) +

111 pd110·p13false:(k’=1)&(k̂’=3)&(v1’=false) + pd110·p13true:(k’=1)&(k̂’=3)&(v1’=true) +

112 pd120·p21false:(k’=2)&(k̂’=1)&(v1’=false) + pd120·p21true:(k’=2)&(k̂’=1)&(v1’=true) +

113 pd120·p22false:(k’=2)&(k̂’=2)&(v1’=false) + pd120·p22true:(k’=2)&(k̂’=2)&(v1’=true) +

114 pd120·p23false:(k’=2)&(k̂’=3)&(v1’=false) + pd120·p23true:(k’=2)&(k̂’=3)&(v1’=true) +

115 pd130·p31false:(k’=3)&(k̂’=1)&(v1’=false) + pd130·p31true:(k’=3)&(k̂’=1)&(v1’=true) +

116 pd130·p32false:(k’=3)&(k̂’=2)&(v1’=false) + pd130·p32true:(k’=3)&(k̂’=2)&(v1’=true) +

117 pd130·p33false:(k’=3)&(k̂’=3)&(v1’=false) + pd130·p33true:(k’=3)&(k̂’=3)&(v1’=true);
. . .

325 endmodule
326

327 const int x1false; // alerts to be issued when driver is classified attentive (k̂ = 1) and verification result is false
. . .

332 const int x3true; // alerts to be issued when driver is classified inattentive (k̂ = 3) and verification result is true
333
334 module DNNPerceptionController
335 c : [0..7] init 0;
336

337 [decide] t=3 ∧ k̂=1 ∧ ¬v1 → 1:(c’=x1false);
. . .

342 [decide] t=3 ∧ k̂=3 ∧ v1 → 1:(c’=x3true);
343 endmodule
344
345 module Turn

. . .
351 endmodule

Figure 12: DNN-perception pDTMC model of the SafeSCAD driver-attentiveness management sys-
tem for the scenario when a single DNN verification method is used to distinguish between “verified”
(v1 = true) and “unverified” (v1 = false) DNN predictions of the driver’s attentiveness level. Lines 103–
111 show how all combinations of true (k′) and DNN-predicted (k̂′) driver attentiveness levels can be
reached from the attentive driver state (k = 1) when no alerts are used (c = 0). The six-parameter
deterministic controller decides a combination of alerts c for each pair of DNN-predicted driver aten-
tiveness level k̂ and online DNN verification result v1 (lines 339-344). The Switch module and the two
reward structures from the pDTMC in Figure 11 are omitted for brevity.

be the instances of the perfect-perception pDTMC M and DNN-perception pDTMC M̂ corresponding
to the controller parameters x and x̂, respectively. With this notation, we have

pmc(Φ,M̂x̂) = pmc(Φ,Mx), (27)

and
pmc(ΦR,M̂x̂) = pmc(ΦR,Mx), (28)

23

for any (quantitative) PCTL state formula Φ and reward state formula ΦR if and only if

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′ (29)

for all (z, k, 3, c) ∈ S and c′ ∈ C.

Properties (27) and (28) imply that any constraint (15) is either satisfied or violated by both Mx

and M̂x̂ (since the two DTMCs yield the same value for the system property associated with the
constraint). Likewise, Mx and M̂x̂ are guaranteed to achieve the same value for the system property
associated with any optimisation objective (16).

Corollary 1. For any combination of constraints (15) and optimisation objectives (16) for which there
exists a probabilistic DNN-perception controller that satisfies the constraints, there exists also a prob-
abilistic perfect-perception controller that satisfies the same constraints and yields the same values for
the PCTL properties from the optimisation objectives.

Corollary 2. There exist an infinite number of combinations of constraints (15) and optimisation ob-
jectives (16) for which there exists a probabilistic perfect-perception controller that satisfies the con-
straints, and no DNN-perception controller exists that satisfies the constraints and yields the same
values for the system properties from the optimisation objectives.

Corollary 2 shows that the decision-making capabilities of infinitely many perfect-perception con-
trollers cannot be replicated by DNN-perception controllers. While this does not indicate how many of
these practically unachievable controllers satisfy constraints (15) and Pareto-optimise objectives (16),
the proof of the corollary provides a hint about this by showing that DNN-perception controllers do not
exist for large αzcc′ values, i.e., for scenarios when the perfect-perception controller decides to use a
specific configuration c′ with high probability. Intuitively, these scenarios are highly relevant, i.e., many
perfect-perception controllers with no equivalent DNN-perception controllers are likely to be Pareto-
optimal. For instance, the perfect-perception controller used for the mobile robot application from the
next section decides that the robot should mostly or even always wait when a collision with another
mobile agent would otherwise occur. This line of reasoning also implies that deterministic perfect-
perception controllers are likely to not have equivalent (probabilistic or deterministic) DNN-perception
controllers.

Stage 3: Controller synthesis. The controller synthesis problem for the DNN-perception system in-
volves finding instantiations x̂ of the DNN-perception controller parameters for which the pDTMC M̂
from (18) satisfies the constraints (15) and is Pareto optimal with respect to the optimisation objec-
tives (16). Solving the general version of this problem precisely is unfeasible. However, metaheuristics
such as multi-objective genetic algorithms for probabilistic model synthesis [7, 24] can be used to
generate close approximations of the Pareto-optimal controller set. Alternatively, exhaustive search
can be employed to synthesise the actual Pareto-optimal controller set for systems with determinis-
tic controllers and small numbers of controller parameters, or—by discretising the search space—an
approximate Pareto-optimal controller set for systems with probabilistic controllers.

For the SafeSCAD system, the DNN verification methods verif 1 and verif 2 from (3) and (4) were
used in all possible combinations (i.e., alone, together, and neither) in the DEEPDECS DNN un-
certainty quantification stage. Figure 13 compare the controller Pareto fronts obtained for all these
combinations to the Pareto front associated with the perfect-perception model from Figure 11.

The search space (812 controller parameter combinations when both DNN verification methods
are used) is very large. As such, an exhaustive search to determine the Pareto-optimal controllers
is infeasible. Therefore, the probabilistic model synthesis tool EvoChecker [24], which adopts multi-
objective genetic algorithms, was employed to generate close approximations of the Pareto-optimal

24

0 2000 4000 6000
0

20

40

60

80

100

Figure 13: Pareto front associated with the set of Pareto-optimal SafeSCAD controllers

controllers. The Pareto fronts, see Figure 13 show that the inclusion of verification methods achieves
Pareto-optimal controllers closer to the perfect-perception Pareto fronts. Furthermore, the knee point
of the verif1 and verif1 and verif2 fronts are closest to the knee point of the perfect DNN front. These
two fronts share a similar frontier in general.

25

5 Safe-SCAD Demonstrator Evaluation

We conducted a user study to evaluate the integrated Safe-SCAD demonstrator system. The evalua-
tion is structured around the following research questions:

• RQ1: How does Safe-SCAD affect driver takeover reaction time?

• RQ2: How does Safe-SCAD affect driver stress and cognitive workload?

• RQ3: What are driver perceptions (e.g., safety, disruptiveness, and urgency) about Safe-SCAD?

Figure 14: The driving simulator setup for the user study.

5.1 Apparatus and Data Collection

The study was conducted using the SimXperience Stage 5 Full Motion Racing Simulator (Figure 14).
The virtual driving environment was simulated using CARLA [15] and projected on a 55-inch display
placed about 63 inches away from the driver’s seat. A 9.7-inch tablet display was mounted on the right
side of the simulator as the infotainment system. Participants could switch between the automated
and manual driving modes by press a button on the steering wheel (see Figure 14). In the automated
mode, the simulated vehicle was equipped with SAE Level 3 automation and could issue TORs (350 Hz
acoustic with 75 ms duration) to ask the driver to resume the control if it was not able to handle a
situation by itself. In the manual driving mode, participants could control the vehicle via the steering
wheel and pedals.

In this study, we collected drivers’ psychophysiological, vehicle-related metrics, workload, and per-
ceived safety. We used a Shimmer3+ wearable device to measure the driver’s heart rate (PPG) and
galvanic skin response (GSR) signals with a sampling rate of 256 Hz. Heart rate variability (the time
elapsed between two successive R-waves) from PPG and maximum and mean phasic components
were calculated as the objective metrics reflecting cognitive load variation and stress, respectively.
Furthermore, we installed one high resolution camera above the steering wheel to monitor the driver’s
head and eye movement. Finally, we developed multiple APIs to forward all stream of data to iMotions
biometric platform for the real-time aggregation and synchronization.

5.2 Experimental Design

5.2.1 Independent Factors

The study utilized a within-subject design to compare the Safe-SCAD demonstrator system with a
baseline system. As illustrated in Figure 1, the Safe-SCAD system automatically triggers advisory

26

Figure 15: Advisory warning modalities: (a) visual head-up-display, (b) vibrotactile.

warnings through the following process: (1) DeepTake continuously predicts driver takeover reaction
time based on the sensing data, (2) the sensitivity and robustness of DeepTake predictions are verified,
and (3) the Safe-SCAD controllers decides if an advisory warning should be triggered based on the
verified predictions. Depending on the urgency of the situation (e.g., the predicted reaction time is slow
and the verification results confirm the robustness of predictions), multiple warning modalities may
be triggered simultaneously, including voice, visual head-up-display, and vibrotactile (see Figure 15).
By contrast, the baseline system used the Wizard-of-Oz technique where the Wizard operator (i.e.,
experimenter) manually issued the warnings after observing the driver immersed in non-driving-related
tasks (NDRTs) for certain period.

5.2.2 Dependent Measures

We used the following objective measurements and subjective feedback as dependent variables.
RQ1 questions driver takeover reaction time. We measured the time difference between the TOR

initiation and the exact moment of the driver pressing the button on the steering wheel to resume
manual control.

RQ2 evaluates driver stress and cognitive workload. We asked participants to complete the Driving
Activity Load Index (DALI) [49], which customizes NASA-TLX for the automotive domain.

RQ3 inquires about driver perceptions. We asked participants to rate their perceived safety, disrup-
tiveness, and the urgency of advisory warnings on a 5-point Likert-type scale ranging from 1 (strongly
disagree) to 5 (strongly agree), which was adapted from the rating questionnaire used in the prior
study by Iqbal et al. [30].

5.3 Procedure

Upon arrival, the participants were briefed about the study. Participants then signed an informed
consent form and completed a demographics questionnaire, followed by a 5-minute practice drive
to get familiar with the driving simulator and NDRTs. In this study, we considered three common
NDRTs: (1) Reading a book out loud; (2) Having a conversation with the passenger; and (3) Watching
a movie displayed on the tablet. We fitted the participant with the Shimmer3+ wearable device and
calibrated the eye-tracker (which was re-calibrated at the beginning of each trial). Participants were
informed that there was no need to actively monitor the driving environments or resume the control of
the vehicle unless a TOR was issued. However, they were instructed to resume the vehicle control as

27

soon as a TOR was issued, then switch back to the automated driving once the incident had passed
and continue the engagement with a NDRT. Each participant was asked to perform two experimental
drives (Safe-SCAD and baseline), each containing 6 possible takeover events (2 TORs per NDRT). At
the beginning of the drive, the participants were asked to activate the automated mode and perform
a NDRT based on the experimenter’s instructions, followed by two more NDRTs. At the end of each
drive, the questionnaire on workload (DALI) and perceived safety and urgency were administered. The
entire study took about 90 minutes.

5.4 Result Analysis

We analyzed the data collected from the user study for the proposed research questions. We set the
statistical significance level as α = 0.05.

5.4.1 Effects on Driver Takeover Reaction Time (RQ1)

Driver reaction to the hazardous situations is a critical component of road safety research. Under-
standing of driver reaction can help design safe automated vehicles and develop effective collision
warning systems. In this study the time from receiving the takeover warning to the moment of relin-
quishing the vehicle control is considered reaction time. Thus, analysis of reaction time is an essential
approach to gauge the effectiveness of the proposed method.

The descriptive analysis on the reaction time (see Fig 16) displays that driver’s response through-
out the Safe-SCAD trial (Mean=0.695sec, SD=0.34) was slightly better than the baseline (Mean=0.88,
SD=0.37). In order to test the RQ1, we conducted t-test on the reaction time obtained in each experi-
mental condition (baseline, and Safe-SCAD method) to see if there is difference among the methods.
The results of the t-test (t(46) = −1.77, p = 0.081) showing no-significant difference between the two
groups.

Figure 16: Results of reaction time w.r.t each trial.

5.4.2 Effects on Driver Stress and Cognitive Workload (RQ2)

We also analyzed the participants’ subjective rating on DALI, which includes six dimensions of work-
load as shown in Figure 17. ANOVA analysis found that there were no significant effects on any
workload dimensions. However, on average Safe-SCAD required more visual, auditory, tactile, and
attention demand from the participants than the baseline. Furthermore, Safe-SCAD shows a much

28

Figure 17: Results on DALI ratings about workload.

higher level of perceived interference (disturbance) than the baseline, but a similar level of situational
stress.

5.4.3 Driver Perceptions (RQ3)

Figure 18: Results on driver perceived safety, disruptiveness, and urgency of advisory warnings.

Figure 18 shows the survey results on drivers’ perceived safety, disruptiveness, and urgency of
advisory warnings. The data does not show a significant difference between Safe-SCAD and the
baseline. However, participants did report that Safe-SCAD was more disruptive of their non-driving
tasks and its warnings appeared more urgent. Yet, Safe-SCAD was also perceived as making driving
safer.

In the post-session interview, two participants indicated that they preferred Safe-SCAD, as it was
more convenient and informative, while the other two indicated their preference for the baseline as
Safe-SCAD was more disruptive. Yet, all four participants noted that Safe-SCAD was more useful
during driving and three of the four participants noted Safe-SCAD was more effective during takeover
requests.

29

References

[1] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen. Discrete-time rewards model-
checked. In International Conference on Formal Modeling and Analysis of Timed Systems, pages
88–104. Springer, 2003.

[2] Victoria A Banks, Katherine L Plant, and Neville A Stanton. Driver error or designer error: Using
the perceptual cycle model to explore the circumstances surrounding the fatal tesla crash on 7th
may 2016. Safety science, 108:278–285, 2018.

[3] Frauke L Berghöfer, Christian Purucker, Frederik Naujoks, Katharina Wiedemann, and Claus
Marberger. Prediction of take-over time demand in conditionally automated driving-results of a
real world driving study. In Proceedings of the Human Factors and Ergonomics Society Europe
Chapter 2018 Annual Conference, pages 69–81, 2018.

[4] Andrea Bianco and Luca De Alfaro. Model checking of probabilistic and nondeterministic systems.
In International Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 499–513. Springer, 1995.

[5] Christian Braunagel, Wolfgang Rosenstiel, and Enkelejda Kasneci. Ready for take-over? a new
driver assistance system for an automated classification of driver take-over readiness. IEEE
Intelligent Transportation Systems Magazine, 9(4):10–22, 2017.

[6] California State Assembly. Assembly Bill 2866 Autonomous vehicles, February 2016.

[7] Radu Calinescu, Milan Ceska, Simos Gerasimou, Marta Kwiatkowska, and Nicola Paoletti. Ef-
ficient synthesis of robust models for stochastic systems. Journal of Systems and Software,
143:140 – 158, 2018.

[8] Radu Calinescu, Calum Imrie, Ravi Mangal, Corina Pasareanu, Misael Alpizar Santana, and
Gricel Vázquez. Discrete-event controller synthesis for autonomous systems with deep-learning
perception components, 2022.

[9] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy, pages 39–57. IEEE, 2017.

[10] Centre for Connected and Autonomous Vehicles. Safe use of automated lane keeping system
(ALKS). Technical report, UK Department for Transport, August 2020.

[11] Rifai Chai, Ganesh R Naik, Tuan Nghia Nguyen, et al. Driver fatigue classification with inde-
pendent component by entropy rate bound minimization analysis in an eeg-based system. IEEE
Journal of Biomedical and Health Informatics, 21(3):715–724, 2016.

[12] SAE On-Road Automated Vehicle Standards Committee et al. Taxonomy and definitions for terms
related to driving automation systems for on-road motor vehicles. SAE International: Warrendale,
PA, USA, 2018.

[13] Conrado Daws. Symbolic and parametric model checking of discrete-time Markov chains. In
International Colloquium on Theoretical Aspects of Computing, pages 280–294, 2005.

[14] Nachiket Deo and Mohan M Trivedi. Looking at the driver/rider in autonomous vehicles to predict
take-over readiness. IEEE Transactions on Intelligent Vehicles, 2019.

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pages 1–16. PMLR, 2017.

30

[16] Na Du, Feng Zhou, Elizabeth Pulver, Dawn Tilbury, Lionel P Robert, Anuj K Pradhan, and
X Jessie Yang. Predicting takeover performance in conditionally automated driving. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–8,
2020.

[17] Na Du, Feng Zhou, Elizabeth M Pulver, Dawn M Tilbury, Lionel P Robert, Anuj K Pradhan, and
X Jessie Yang. Examining the effects of emotional valence and arousal on takeover perfor-
mance in conditionally automated driving. Transportation research part C: emerging technolo-
gies, 112:78–87, 2020.

[18] Na Du, Feng Zhou, Elizabeth M Pulver, Dawn M Tilbury, Lionel P Robert, Anuj K Pradhan, and
X Jessie Yang. Predicting driver takeover performance in conditionally automated driving. Acci-
dent Analysis & Prevention, 148:105748, 2020.

[19] Jeanne F Duffy, Kirsi-Marja Zitting, and Charles A Czeisler. The case for addressing operator
fatigue. Reviews of Human Factors and Ergonomics, 10(1):29–78, 2015.

[20] Mahdi Ebnali, Kevin Hulme, Aliakbar Ebnali-Heidari, and Adel Mazloumi. How does training effect
users’ attitudes and skills needed for highly automated driving? Transportation research part F:
traffic psychology and behaviour, 66:184–195, 2019.

[21] European Parliament. Regulation (EU) 2019/2144 of the European Parliament and of the Council
on type-approval requirements for motor vehicles. Official Journal of the European Union, L
325/1, 2019.

[22] Francesca M Favarò, Nazanin Nader, Sky O Eurich, Michelle Tripp, and Naresh Varadaraju. Ex-
amining accident reports involving autonomous vehicles in California. PLoS one, 12(9):e0184952,
2017.

[23] Anna Feldhütter, Dominik Kroll, and Klaus Bengler. Wake up and take over! the effect of fa-
tigue on the take-over performance in conditionally automated driving. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pages 2080–2085. IEEE, 2018.

[24] Simos Gerasimou, Radu Calinescu, and Giordano Tamburrelli. Synthesis of probabilistic models
for quality-of-service software engineering. Automated Software Engineering, 25(4):785–831,
2018.

[25] John M. Grese, Corina S. Păsăreanu, and Erfan Pakdamanian. Formal analysis of a neural
network predictor in shared-control autonomous driving. AIAA 2021-1580, Session: Human-
Automation Interaction, 2021.

[26] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. CoRR, abs/1706.04599, 2017.

[27] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, page 1321–1330. JMLR.org, 2017.

[28] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

[29] Takeyoshi Imai. Legal regulation of autonomous driving technology: Current conditions and is-
sues in Japan. IATSS Research, 43(4):263–267, 2019.

31

[30] Shamsi T Iqbal, Eric Horvitz, Yun-Cheng Ju, and Ella Mathews. Hang on a sec! effects of proac-
tive mediation of phone conversations while driving. In Proceedings of the SIGCHI conference
on human factors in computing systems, pages 463–472, 2011.

[31] Vaidehi Joshi, Aiswarya Vinod Kumar, Aman Mohanty, Sai Prahladh Padmanabhan, John Grese,
Ravi Mangal, and Corina S. Păsăreanu. Safety of shared control in autonomous driving. CMU
Technical Report, 2021.

[32] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and
Clark Barrett. The marabou framework for verification and analysis of deep neural networks. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 443–452, Cham, 2019.
Springer International Publishing.

[33] Moritz Körber, Lorenz Prasch, and Klaus Bengler. Why do i have to drive now? post hoc expla-
nations of takeover requests. Human factors, 60(3):305–323, 2018.

[34] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of probabilistic
real-time systems. In Proc. of the 23rd Int. Conf. on Computer Aided Verification, volume 6806 of
LNCS, pages 585–591. Springer, 2011.

[35] Jiwon Lee and Ji Hyun Yang. Analysis of driver’s eeg given take-over alarm in sae level 3
automated driving in a simulated environment. International journal of automotive technology,
21(3):719–728, 2020.

[36] Alexander Lotz and Sarah Weissenberger. Predicting take-over times of truck drivers in con-
ditional autonomous driving. In International Conference on Applied Human Factors and Er-
gonomics, pages 329–338. Springer, 2018.

[37] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[38] Querino Maia, Michael A Grandner, et al. Short and long sleep duration and risk of drowsy driving
and the role of subjective sleep insufficiency. Accident Analysis & Prevention, 59:618–622, 2013.

[39] Gerald Matthews and Peter A Hancock. The Handbook of Operator Fatigue. CRC Press, 2017.

[40] Rod McCall, Fintan McGee, Alexander Mirnig, Alexander Meschtscherjakov, Nicolas Louveton,
Thomas Engel, and Manfred Tscheligi. A taxonomy of autonomous vehicle handover situations.
Transportation research part A: policy and practice, 124:507–522, 2019.

[41] Anthony D McDonald, Hananeh Alambeigi, Johan Engström, Gustav Markkula, Tobias Vogelpohl,
Jarrett Dunne, and Norbert Yuma. Toward computational simulations of behavior during auto-
mated driving takeovers: a review of the empirical and modeling literatures. Human factors,
61(4):642–688, 2019.

[42] Natasha Merat and A Hamish Jamson. How do drivers behave in a highly automated car? In 5th
International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle
Design: Driving Assessment 2009. University of Iowa, 2009.

[43] Brian Mok, Mishel Johns, David Miller, and Wendy Ju. Tunneled in: Drivers with active secondary
tasks need more time to transition from automation. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, pages 2840–2844, 2017.

32

[44] Frederik Naujoks, Christoph Mai, and Alexandra Neukum. The effect of urgency of take-over re-
quests during highly automated driving under distraction conditions. Advances in Human Aspects
of Transportation, 7(Part I):431, 2014.

[45] On-Road Automated Driving (ORAD) committee. Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles. Standard J3016_201806, SAE Interna-
tional, 2018.

[46] Erfan Pakdamanian, Lu Feng, and Inki Kim. The effect of whole-body haptic feedback on driver’s
perception in negotiating a curve. In Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, volume 62, pages 19–23. SAGE Publications Sage CA: Los Angeles, CA, 2018.

[47] Erfan Pakdamanian, Nauder Namaky, Shili Sheng, Inki Kim, James Arthur Coan, and Lu Feng.
Toward minimum startle after take-over request: A preliminary study of physiological data. In 12th
International Conference on Automotive User Interfaces and Interactive Vehicular Applications,
pages 27–29, 2020.

[48] Erfan Pakdamanian, Shili Sheng, Sonia Baee, Seongkook Heo, Sarit Kraus, and Lu Feng. Deep-
Take: Prediction of driver takeover behavior using multimodal data. In ACM CHI Conference on
Human Factors in Computing Systems, 2021.

[49] Annie Pauzié. A method to assess the driver mental workload: The driving activity load index
(dali). IET Intelligent Transport Systems, 2(4):315–322, 2008.

[50] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining
the predictions of any classifier. CoRR, abs/1602.04938, 2016.

[51] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. CoRR,
abs/1703.01365, 2017.

[52] UNECE World Forum for Harmonization of Vehicle Regulations. ECE/TRANS/WP.29/2020/81:
United Nations Regulation on Uniform provisions concerning the approval of vehicles with regard
to Automated Lane Keeping Systems, June 2020.

[53] US National Transportation Safety Board. Collision between a sport utility vehicle operating with
partial driving automation and a crash attenuator, February 2020.

[54] Jingyan Wan and Changxu Wu. The effects of vibration patterns of take-over request and non-
driving tasks on taking-over control of automated vehicles. International Journal of Human–
Computer Interaction, 34(11):987–998, 2018.

[55] Kathrin Zeeb, Axel Buchner, and Michael Schrauf. What determines the take-over time? an
integrated model approach of driver take-over after automated driving. Accident Analysis & Pre-
vention, 78:212–221, 2015.

[56] Kathrin Zeeb, Manuela Härtel, Axel Buchner, and Michael Schrauf. Why is steering not the same
as braking? the impact of non-driving related tasks on lateral and longitudinal driver interventions
during conditionally automated driving. Transportation research part F: traffic psychology and
behaviour, 50:65–79, 2017.

[57] Bo Zhang, Joost de Winter, Silvia Varotto, Riender Happee, and Marieke Martens. Determinants
of take-over time from automated driving: A meta-analysis of 129 studies. Transportation research
part F: traffic psychology and behaviour, 64:285–307, 2019.

33

Appendix A DeepTake: Prediction of Driver Takeover Behavior Using
Multimodal Data

34

DeepTake: Prediction of Driver Takeover Behavior using
Multimodal Data

Erfan Pakdamanian
School of Engineering
University of Virginia
ep2ca@virginia.edu

Shili Sheng
School of Engineering
University of Virginia
ss7dr@virginia.edu

Sonia Baee
School of Engineering
University of Virginia
sb5ce@virginia.edu

Seongkook Heo
School of Engineering
University of Virginia

seongkook@virginia.edu

Sarit Kraus
Department of Computer Science

Bar-Ilan University
sarit@cs.biu.ac.il

Lu Feng
School of Engineering
University of Virginia
lu.feng@virginia.edu

Figure 1: DeepTake uses data from multiple sources (pre-driving survey, vehicle data, non-driving related tasks (NDRTs) in-
formation, and driver biometrics) and feeds the preprocessed extracted features into deep neural network models for the
prediction of takeover intention, time and quality.

ABSTRACT
Automated vehicles promise a future where drivers can engage
in non-driving tasks without hands on the steering wheels for a
prolonged period. Nevertheless, automated vehicles may still need
to occasionally hand the control back to drivers due to technology
limitations and legal requirements. While some systems determine
the need for driver takeover using driver context and road condition
to initiate a takeover request, studies show that the driver may not
react to it.We present DeepTake, a novel deep neural network-based
framework that predicts multiple aspects of takeover behavior to
ensure that the driver is able to safely take over the control when
engaged in non-driving tasks. Using features from vehicle data,
driver biometrics, and subjective measurements, DeepTake predicts
the driver’s intention, time, and quality of takeover. We evaluate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445563

DeepTake performance using multiple evaluation metrics. Results
show that DeepTake reliably predicts the takeover intention, time,
and quality, with an accuracy of 96%, 93%, and 83%, respectively.
Results also indicate that DeepTake outperforms previous state-of-
the-art methods on predicting driver takeover time and quality. Our
�ndings have implications for the algorithm development of driver
monitoring and state detection.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI .

KEYWORDS
Automated driving; Multimodal data; Takeover behavior; Human-
automation interaction; Deep neural networks

ACM Reference Format:
Erfan Pakdamanian, Shili Sheng, Sonia Baee, Seongkook Heo, Sarit Kraus,
and Lu Feng. 2021. DeepTake: Prediction of Driver Takeover Behavior using
Multimodal Data. In CHI Conference on Human Factors in Computing Systems
(CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3411764.3445563

ar
X

iv
:2

01
2.

15
44

1v
2

 [
cs

.L
G

]
 1

5
Ja

n
20

21

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

1 INTRODUCTION
The rapid development of autonomous driving technologies promis-
es a futurewhere drivers can take their hands o� the steeringwheels
and instead engage in non-driving related tasks (NDRTs) such as
reading or using mobile devices. Incorporating cameras, sensors,
global positioning systems (GPS), adaptive cruise control, light
detection and ranging, and advanced driver assistance systems,
automated vehicles (AVs) can navigate automatically. In Level 3
of autonomy (i.e., conditionally automated driving), as de�ned by
the Society of Automotive Engineers (SAE international [9]), the
driver does not need to continuously monitor the driving environ-
ment. Nevertheless, due to current technology limitations and legal
restrictions, AVs may still need to handover the control back to
drivers occasionally (e.g., under challenging driving conditions be-
yond the automated systems’ capabilities) [39]. In such cases, AVs
would initiate takeover requests (TORs) and alert drivers via audi-
tory, visual, or vibrotactile modalities [44, 47, 61] so that the drivers
can resume manual driving in a timely manner. However, there
are challenges in making drivers safely take over control. Drivers
may need a longer time to shift their attention back to driving in
some situations, such as when they have been involved in NDRTs
for a prolonged time [68] or when they are stressed or tired [22].
Even if TORs are initiated with enough time for a driver to react,
it does not guarantee that the driver will safely take over [40].
Besides, frequent alarms could startle and increase drivers’ stress
levels leading to detrimental user experience in AVs [33, 34, 48].
These challenges denote the need for AVs to constantly monitor
and predict driver behavior and adapt the systems accordingly to
ensure a safe takeover.

The vast majority of prior work on driver takeover behavior
has focused on the empirical analysis of high-level relationships
between the factors in�uencing takeover time and quality (e.g.,
[16, 18, 43, 69]). More recently, the prediction of driver takeover
behavior using machine learning approaches has been drawing
increasing attention. However, only a few studies have focused on
the prediction of either takeover time [2, 35] or takeover quality [4,
11, 15, 17]; and their obtained accuracy results (ranging from 61%
to 79%) are insu�cient for the practical implementation of real-
world applications. This is partly due to the fact that takeover
prediction involves a wide variety of factors (e.g., drivers’ cognitive
and physical states, vehicle states, and the contextual environment)
that could in�uence drivers’ takeover behavior [66].

In this paper on the other hand, we present a novel approach,
namedDeepTake, to address these challenges by providing reliable
predictions of multiple aspects of takeover behavior. DeepTake is
a uni�ed framework for the prediction of driver takeover behavior
in three aspects: (1) takeover intention – whether the driver would
respond to a TOR; (2) takeover time – how long it takes for the driver
to resume manual driving after a TOR; and (3) takeover quality –
the quality of driver intervention after resuming manual control. As
illustrated in Figure 1, DeepTake considers multimodal data from
various sources, including driver’s pre-driving survey response
(e.g., gender, baseline of cognitive workload and stress levels), ve-
hicle data (e.g., lane position, steering wheel angle, throttle/brake
pedal angles), engagement in NDRTs, and driver biometrics (e.g.,

eye movement for detecting visual attention, heart rate and gal-
vanic skin responses for the continuous monitoring of workload
and stress levels). This data can easily be collected in AVs’ driving
environment. For instance, all of the driver biometrics utilized in
DeepTake can be captured by wearable smartwatches and deployed
eye-tracking systems. The multitude of sensing modalities and
data sources o�er complementary information for the accurate and
highly reliable prediction of driver takeover behavior. DeepTake
extracts meaningful features from the preprocessed multimodal
data, and feeds them into deep neural network (DNN) models with
mini-batch stochastic gradient descent. We built and trained di�er-
ent DNN models (which have the same input and hidden layers, but
di�erent output layers and weights) for the prediction of takeover
behavior: intention, time and quality. We validate DeepTake frame-
work feasibility using data collected from a driving simulator study.
Finally, we evaluate the performance of our DNN-based framework
with six machine learning-based models on prediction of driver
takeover behavior. The results show that DeepTake models sig-
ni�cantly outperform six machine learning-based models in all
predictions of takeover intention, time and quality. Speci�cally,
DeepTake achieves an accuracy of 96% for the binary classi�cation
of takeover intention, 93%, and 83% accuracy for multi-class classi-
�cation of takeover time and quality, respectively. These accuracy
results also outperform results reported in the existing work.

The main contribution of this work is the development of Deep-
Take framework that predicts driver takeover intention, time and
quality using vehicle data, driver biometrics and subjective measure-
ments1. The intersection between ubiquitous computing, sensing
and emerging technologies o�ers promising avenues for DeepTake
to integrate modalities into a novel human-centered framework to
increase the robustness of drivers’ takeover behavior prediction.
We envision that DeepTake can be integrated into future AVs, such
that the automated systems can make optimal decisions based on
the predicted driver takeover behavior. For example, if the predicted
takeover time exceeds the duration that the vehicle can detect situ-
ations requiring TORs, or the predicted takeover quality is too low
to respond to TORs, the automated systems can warn the driver
to engage less with the NDRT. In other words, DeepTake facili-
tates drivers to be distracted as long as they can properly respond
and safely maneuver the vehicle. The reliable prediction of driver
takeover behavior provided by DeepTake framework would not
only improve the safety of AVs, but also improve drivers’ user ex-
perience and productivity in AVs (e.g., drivers can focus on NDRTs
without worrying about missing any TORs and potential tragic
circumstances). We believe that our work makes a step towards
enabling NDRTs in automated driving, and helps HCI researchers
and designers to create user interfaces and systems for AVs that
adapt to the drivers’ context.

2 RELATEDWORK
We discuss prior work on the analysis of takeover time and quality,
and position our work in the context of state-of-the-art takeover
behavior prediction research.

1DeepTake framework con�gurations, implementation details and code are available
at https://github.com/erfpak7/DeepTake

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

Takeover time. In this paper, we consider the takeover time as
the period of time from the initiation of TOR to the exact moment
of the driver resuming manual control (see Figure 3), following the
ISO standard de�nition in [30]. Note that the same concept has
also sometimes been named as takeover reaction time or response
time in the literature (e.g., [20, 31, 32, 51]). The empirical litera-
ture de�nes a large variety of takeover time from a mean of 0.87s
to brake [63], to an average of 19.8s to response to a countdown
TOR [52] and 40s to stabilize the vehicle [42]. This range is derived
from in�uential factors impacting perception, cognitive processing,
decision-making and resuming readiness [25, 66]. A meta-analysis
of 129 studies by Zhang et al. [69] found that a shorter takeover
time is associated with the following factors: a higher urgency
of the driving situation, the driver not performing a non-driving
related task (NDRT) such as using a handheld device, the driver
receiving an auditory or vibrotactile TOR rather than no TOR or a
visual-only TOR. Recent studies by Mok et al. [43] and Eriksson et
al. [20] both con�rmed that drivers occupied by NDRTs have higher
responses to TORs. Similarly, [21] found a signi�cant increase in
reaction time induced by NDRTs. It is further concluded that the
visual distraction causes higher reaction time when it is loaded
with cognitive tasks [56]. Studies have also revealed several driving
environments, TOR modalities [56, 57], driving expectancy [54],
age [60] and gender [62] associated with takeover time. The present
study extend previous �ndings by considering various NDRTs, gen-
der, and objective and subjective measurements of mental workload
into the DeepTake framework.

Takeover quality. In addition to takeover time, it is essential to
assess the takeover quality, which is de�ned as the quality of driver
intervention after resuming manual control [30]. There are a vari-
ety of takeover quality measures, depending on di�erent takeover
situations (e.g., collision avoidance, lane-keeping), including objec-
tive measures (e.g., mean lateral position deviation, steering wheel
angle deviation, metrics of distance to other vehicles or objects,
minimum time to collision, frequency of emergency braking) and
subjective measures (e.g., expert-based assessment, self-reported
experience). Prior work has found that takeover quality can be in�u-
enced by factors such as drivers’ cognitive load [14, 67], emotions
and trust [12, 16, 28], and distraction of secondary NDRTs [13, 38].
Takeover time to an obstacle[67] has been used widely studies as
an indicator of takeover performance [20]. However, a study by
Louw et al. [36] showed that takeover time and quality appear to
be independent. This lack of consensus could be due to the fact that
studies apply various time budget for takeover control.

Takeover prediction. While existing literature mostly focus
on the empirical analysis of drivers’ takeover time and quality,
there are a few recent e�orts on the predication of drivers’ takeover
behavior using machine learning (ML) approaches. Lotz and Weis-
senberger [35] applied a linear support vector machine (SVM)
method to classify takeover time with four classes, using driver
data collected with a remote eye-tracker and body posture camera;
the results achieve an accuracy of 61%. Braunagel et al. [4] devel-
oped an automated system that can classify the driver’s takeover
readiness into two levels of low and high (labeled by objective driv-
ing parameters related to the takeover quality); their best results
reached an overall accuracy of 79% based on a linear SVM classi�er,
using features including the tra�c situation complexity, the driver’s

gazes on the road and NDRT involvement. Deo and Trivedi [11]
proposed a Long Short TermMemory (LSTM) model for continuous
estimation of the driver’s takeover readiness index (de�ned by sub-
jective ratings of human observers viewing the feed from in-vehicle
vision sensors), using features representing the driver’s states (e.g.,
gaze, hand, pose, foot activity); their best results achieve a mean
absolute error (MAE) of 0.449 on a 5 point scale of the takeover
readiness index. Du et al. [15, 17] developed random forest models
for classifying drivers’ takeover quality into two categories of good
and bad (given by subjective self-reported ratings), using drivers’
physiological data and environment parameters; their best model
achieves an accuracy of 70%.

In summary, the existing works only focus on the prediction of
either takeover time or takeover quality. By contrast, DeepTake
provides a uni�ed framework for the prediction of all three as-
pects of takeover behavior: intention, time and quality together.
Furthermore, DeepTake achieves better accuracy results: 96% for
takeover intention (binary classi�cation), 93% for takeover time
(three classes), and 83% for takeover quality (three classes).

3 DEEPTAKE: A NEW APPROACH FOR
TAKEOVER BEHAVIOR PREDICTION

In this section, we present a novel deep neural network (DNN)-
based approach, DeepTake, for the prediction of a driver’s takeover
behavior (i.e., intention, time, quality). Figure 1 illustrates an overvi-
ew of DeepTake. First, we collect multimodal data such as driver
biometrics, pre-driving survey, types of engagement in non-driving
related tasks (NDRTs), and vehicle data. The multitude of sens-
ing modalities and data streams o�ers various and complementary
means to collect data that will help to obtain a more accurate and ro-
bust prediction of drivers’ takeover behavior. Second, the collected
multimodal data are preprocessed followed by segmentation and
feature extraction. The extracted features are then labeled based on
the belonging takeover behavior class. In our framework, we de�ne
each aspect of takeover behavior as a classi�cation problem (i.e.,
takeover intention as a binary classes whereas takeover time and
quality as three multi-classes). Finally, we build DNN-based predic-
tivemodels for each aspect of takeover behavior. DeepTake takeover
predictions can potentially enable the vehicle autonomy to adjust
the timely initiation of TORs to match drivers’ needs and ultimately
improve safety. We describe the details of each step as follows.

3.1 Multimodal Data Sources
3.1.1 Driver Biometrics. The prevalence of wearable devices has
made it easy to collect various biometrics for measuring drivers’
cognitive and physiological states. Speci�cally, we consider the
following three types of driver biometrics in DeepTake.

Eye movement. Drivers are likely to engage in non-driving
tasks when the vehicle is in the automated driving mode [3, 48, 64].
Therefore, it is important to assess the drivers’ visual attention
and takeover readiness before the initiation of TORs. There is a
proven high correlation between a driver’s visual attention and
eye movement [1, 65, 66]. DeepTake uses eye movement data (e.g.,
gaze position, �xation duration on areas of interest) measured by
eye-tracker devices. We utilize a pair of eye-tracking glasses in our

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

user study (see Section 4). But the aforementioned eye movement
data can be captured with any eye-tracking device.

Heart rate. Studies have found that heart rate variability (HRV),
�uctuation of heart rate in the time intervals between the nearby
beats, is a key factor associated with drivers’ workload [49], stre-
ss [12], and drowsiness [59]. DeepTake uses features extracted from
HRV analysis for monitoring drivers’ situational awareness and
readiness to respond to TORs. Heart rate can be measured in many
di�erent ways, such as checking the pulse or monitoring physio-
logical signals. DeepTake employes photoplethysmographic (PPG)
signal, which can be collected continuously via PPG sensors com-
monly embedded in smartwatches. PPG sensors monitor heart rate
by the emission of infrared light into the body and measure the
re�ection back to estimate the blood �ow. Unlike some heart rate
monitoring devices that rely on the placement of metal electrodes
on the chest, PPG sensors provide accurate heart rate measures
without requiring intrusive body contact. Therefore, a PPG signal
is preferred for monitoring drivers’ heart rate.

Galvanic skin response (GSR).AlongwithHRV, GSR has been
identi�ed as another signi�cant indicator of drivers’ stress and
workload [12, 23, 41, 53]. A GSR signal measures the skin con-
duction ability. Drivers’ emotional arousal (e.g., stress) can trigger
sweating on the hand, which can be detected through distinctive
GSR patterns. DeepTake incorporates features extracted from the
GSR signal for monitoring drivers’ stress levels. GSR sensors are
also embedded in many wearable devices, including smartwatches.

3.1.2 Pre-Driving Survey. In addition to the objective measure-
ments of driver biometrics, DeepTake exploits subjective pre-driving
survey responses, because drivers’ prior experience and background
may in�uence their takeover behavior [69]. However, any subjective
rating of factors a�ecting a driver’s cognitive and physical ability
as well as driving experience prepare a complete speci�cation of
objective metrics, potentially enhancing the distinctive attributes
of an algorithm. DeepTake framework exerts demographic infor-
mation, NASA-Task Load Index (NASA-TLX) [27], and the 10-item
Perceived Stress Scale (PSS-10) [7] to measure drivers’ perceived
workload and psychological stress. In our user study (see Section 4),
we asked participants to �ll in questionnaires at the beginning of
each trial.

3.1.3 Non-Driving Related Tasks (NDRTs). As described in Sec-
tion 2, prior studies have found that engaging in NDRTs can un-
dermine drivers’ takeover performance. Diverse NDRTs require
di�erent levels of visual, cognitive and physical demands; thus, the
in�uence varies when drivers are asked to interrupt the secondary
task and resume manual control of the vehicle. DeepTake accounts
for the impact of di�erent NDRTs on the prediction of drivers’
takeover behavior. In our user study, we considered four NDRTs
in which drivers are very likely to engage in automated vehicles:
(1) having a conversation with passengers, (2) using a cellphone, (3)
reading, and (4) solving problems such as simple arithmetic ques-
tions (more details in Section 4.3). We chose these NDRTs because
they are commonly used in driving studies [13, 24], and they follow
the framework of di�culty levels in the �ow theory [10]. We further
designed reading and arithmetic problem solving with two di�culty
levels (easy and medium adapted from [46], which reported a strong
correlation between the questions and the physiological responses).

Nevertheless, DeepTake framework can be easily adjusted to any
NDRTs.

3.1.4 Vehicle Data. DeepTake also considers a wide range of data
streams captured from the automated vehicles, including lane posi-
tion, distance to hazards, angles of the steering wheel, throttle and
brake pedal angles, and the vehicle velocity. Such vehicle data can
help to determine the driving condition, the urgency of a takeover
situation, and the impact of drivers’ takeover behavior.

3.2 Data Preparation
3.2.1 Feature Extraction and Multimodal Data Fusion. The goal
of DeepTake is to provide a procedure to reliably predict drivers’
takeover behavior (i.e., intention, time and quality) before a TOR
initiation. Hence, the taken procedure for data preparation depends
on the driving setting, collected data and the context. Herein, we
incorporate data of drivers’ objective and subjective measurements,
as well as vehicle dynamic data. We initially apply data prepro-
cessing techniques including outliers elimination, missing value
imputation using mean substitutions, and smoothing to reduce arti-
facts presented in raw data. It is worth mentioning that we exclude
any data stream providing insights about the unknown future (e.g.,
type of alarm) or containing more than 50% missing value. The
preprocessed time series data are then segmented into 10-second
�xed time windows prior to the occurrences of TORs. In other words,
if TOR happened at time t, we only used data captured in the �xed
time window of [t-10s, t] and did not include any data later than t.
We started with time window values of 2s and 18s, suggested in the
literature [4, 17, 69], and experimentally settled on 10s, as real-world
applications require a shorter time window with better prediction.
We then aggregated the values of all multimodal data over this
time interval, resulting in 256 (max sampling rate)×10��� = 2560
observations per takeover event. However, depending on speci�c
applications and contextual requirements, the selected time win-
dow length could vary. Subsequently, the segmented windows from
modalities are processed to extract meaningful features describing
the attributes impacting takeover behavior.

For the eyemovement, we acquire interpolated features extracted
from raw data through iMotion software [29]. The extracted eye
movement attributes include gaze position, pupil diameters of each
eye, time to �rst �xation, and �xation duration/sequence on the
detected area of interest (i.e., cellphone, tablet and monitor).

To compute the heart rate features, we �rst apply a min-max
normalization on the raw PPG signal, and then �lter the normal-
ized PPG signal by applying a 2nd order Butterworth high pass
�lter with a cut-o� of 0.5Hz followed by a 1st order Butterworth
low pass �lter with a cut-o� frequency of 6Hz. We use an open-
source toolkit HeartPy [58] to �lter the PPG signals and extract the
following features from heart rate variability (HRV) analysis: the
standard deviation of normal beats (SDNN), root mean square of
successive di�erences between normal heartbeats (RMSSD), and
the proportion of pairs of successive beats that di�er by more than
50ms (pNN50). These metrics are to correlate with driver’s cognitive
workload and stress [50].

Furthermore, we obtain two common and important GSR fea-
tures: the number and amplitude of peaks [37, 46]. A peak occurs
when there is a quick burst of raised conductance level. The peak

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 1: List of extracted features used in DeepTake

Data Source Feature Type Values

Eye movement

Gaze position �oat (1920×1080)
Pupil size �oat (0-7)

Time to �rst �xation int (1-90)
Fixation duration �oat (100-1500ms)
Fixation sequence int (1-2500)

Heart rate (PPG signal)
SDNN �oat (45-75ms)
RMSSD �oat (25-43ms)
pNN50 �oat (18-28%)

GSR signal Number of peaks int (1-6)
Amplitude of peaks �oat (0.01- 1.58µs)

Pre-driving survey
Gender binary (M-W)

NASA-TLX categorical (1-21)
PSS-10 categorical (0-4)

Secondary tasks NDRTs categorical (C,U,R,S)1

Vehicle data

Right lane distance �oat (0.73-2.4m)
Left lane distance �oat (1.02-2.8m)
Distance to hazard �oat (98-131m)
Steering wheel angle �oat (-180-114◦)
Throttle pedal angle �oat (15-21◦)
Brake pedal angle �oat (0-17◦)

Velocity �oat (0-55mph)
1: C; Conversation, U ; Using cellphone, R; Reading articles on tablet, and S: Solving arithmetic

questions

amplitude measures how far above the baseline the peak occurred.
Thus, peaks are valuable indicator of stress and mental workload.

While the variety of a driver’s subjective and objective measure-
ments along with vehicle dynamic data provide complementary
information to draw better insights into drivers’ takeover behavior,
we need to �nally fuse these multimodal data into a joint repre-
sentation as input to the DNN model. Beforehand, however, we
employ the Z-score normalization for most of the features except
extracted PPG features to accentuate key data and binding rela-
tionships within the same range. To normalize the features asso-
ciated with PPG, we use the min-max normalization, as explained
above. For any remaining features still containing missing values,
their missing values are imputed by using their means. Table 1
summarizes the list of data sources and extracted features used
in DeepTake. Finally, the generated features from each modality
concatenated to create a rich vector representing driver takeover
attributes. The joint representations of all feature vectors with the
provision of their associated labels are eventually fed into DNN
models for training. Below, the labeling procedure of these feature
vectors is explained.

3.2.2 Data Labeling. The target labels greatly depend on the con-
text in which the labels are presented. Herein, we de�ne the ground
truth labeling for an attribute set denoting the feature vector. Each
label indicates the classi�cation outcome of takeover intention,
time, and quality that is more representative of our user study and
the three takeover behavior aspects.

Takeover intention. DeepTake classi�es a driver’s takeover
intention into the binary outcomes, indicating whether or not the
driver would resume manual control of the vehicle. In our user
study, if a participant initiated the takeover action by pressing the

two buttons mounted on the steering wheel (see Figure 2) upon
receiving a TOR, we label the feature vector as “TK”, showing the
takeover intention; if no takeover action was initiated between the
moment of TOR initiation and the incident (e.g., obstacle avoidance),
we use a “NTK” label displaying the absence of intention.

Takeover time. Recall from Section 2 that takeover time is
de�ned as the time period between a TOR and the exact moment
of a driver resuming manual control. Prior works have considered
the starting time of manual control as the �rst contact with the
steering wheel/pedals [66] or the takeover buttons [32]. In our user
study, we timed the takeover moment once a participant pressed
the two takeover buttons on the steering wheel simultaneously (see
Figure 2). We categorize takeover time into three classes, using
threshold values consistent with the pre-de�ned ith percentile of
takeover time in prior driving studies [8]. Let� denote the takeover
time, thus the labels are de�ned as “low” when � < 2.6� , “medium”
when 2.6� ≤ � ≤ 6.1� , or “high” when � > 6.1� .

Takeover quality. As we alluded to earlier in Section 2, there
are a wide range of metrics [30] for measuring takeover quality,
depending on the needs of various takeover scenarios. In our user
study (see Section 4), we consider a motivating scenario where the
driver needs to take over control of the vehicle and swerve away
from an obstacle blocking the same lane; meanwhile, the vehicle
should not deviate too much from the current lane, risking crashing
into nearby tra�c. Therefore, we measure the takeover quality
using the lateral deviation from the current lane, denoted by � .
In our study, we design a 4-lane rural highway with a lane width
of 3.5�. Therefore, we label the feature vectors into three classes
of takeover quality: “low” or staying in a lane when � < 3.5�,
“medium” or maneuver the obstacle but too much deviations when
7� < � ≤ 10�, or “high” or maneuver safely and one lane deviates
when 3.5 ≤ � ≤ 7�.

3.3 DNN Models for Takeover Behavior
Prediction

DeepTake utilizes a feed-forward deep neural network (DNN) with
a mini-batch stochastic gradient descent. The DNN model archi-
tecture begins with an input layer to match the input features, and
each layer receives the input values from the prior layer and out-
puts to the next one. There are three hidden layers with 23, 14,
and 8 ReLu units, respectively. The output layer can be customized
for the multi-class classi�cation of takeover intention, takeover
time and takeover quality. For example, for the classi�cation of
takeover quality, the output layer consists of three Softmax units
representing three classes (low-, medium-, and high-) of takeover
quality. DeepTake framework uses Softmax cross-entropy loss with
an Adam optimizer with a learning rate of 0.001 to update the
parameters and train the DNN models over 400 epochs. In each
iteration, DeepTake randomly samples a batch of data in order to
compute the gradients with a batch size of 30. Once the gradients
are computed, the initiated parameters get updated. The early stop-
ping method set to 400 epochs prevents over�tting. In addition,
DeepTakes randomly divides the given labeled data into 70% for
training (necessary for learning the weights for each node), 15%
for validation (required to stop learning and overtraining), and 15%
for testing (the �nal phase for evaluating the proposed model’s

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

robustness to work on unseen data). Finally, in order to address im-
balanced data issues where the number of observations per class is
not equally distributed, DeepTake utilizes Synthetic Minority Over-
sampling Technique (SMOTE) [6] which uses the nearest neighbor’s
algorithm to generate new and synthetic data.

In summary, our DeepTake framework employs di�erent DNN
models to predict takeover intention, takeover time and takeover
quality. All of the DNN models in DeepTake have the same num-
ber of inputs and hidden layers, yet di�erent output layers and
associated weights.

4 USER STUDY
To test the feasibility of our proposed DeepTake framework, we
conducted a user study with 20 participants featuring takeover
behavior using a driving simulator2. The following section describes
the experimental setup and design of our user study as follows.

4.1 Participants
In this study, 20 subjects (11 female, 9 male) aged 18-30 (mean=
23.5, SD= 3.1) were recruited. All participants were hired through
the university and were required to have normal or corrected-to-
normal vision, to not be susceptible to simulator sickness, and
to have at least one year of driving experience to be eligible for
participation in this study. Before the experiment, participants were
questioned as to their age and driving experience. None of them had
prior experience of interaction with AVs. They were reminded of
their right to abort their trial at any point with no question asked.
Three participants’ data were later excluded from the analysis,
due to biometric data loss and a large amount of missing values.
Participants received $20 to compensate for the time they spent in
this study.

4.2 Apparatus
Figure 2 shows our low �delity driving simulator setup, which con-
sists of a Logitech G29 steering wheel, accelerator, brake pedal and
paddle shifters. The simulator records driver control actions and
vehicle states with a sampling frequency of 20Hz and sent the cap-
tured data through a custom API using iMotions software [29]. The
simulated driving environments along with the tasks were created
using PreScan Simulation Platform. The driving environment was
displayed on a 30-inch monitor. The distance between the center of
the Logitech G29 steering wheel and the monitor was set at 91cm. A
set of stereo speakers was used to generate the driving environment
sounds along with the auditory alarm of TORs (more details in Sec-
tion 4.3). An Apple iPad Air (10.5-inch) was positioned to the right
side of the driver and steering wheel to mimic the infotainment
system and displayed an article for NDRT.

We used Tobii Pro-Glasses 2 with the sample rate of 60Hz to
collect the eye movement data, and a Shimmer3+ wearable device
with a sampling rate of 256Hz to measure PPG and GSR signals.
To maintain consistency across all participants, we positioned the
Shimmer3+ to the left of all subjects. This consistency helps reduce
the motion artifact where the subjects needed to frequently interact
with the tablet on the right-hand side. Although we designed our

2This study complies with the American Psychological Association Code of Ethics and
was approved by the Institutional Review Board at University of Virginia.

Figure 2: User study setup. This custom driving simulator
consists of a 30-inchmonitor, a Logitech G29 steering wheel,
and 10.5-inchApple iPadAir onwhich the non-driving tasks
are displayed. For switching between the automated and
manual control of the vehicle, the participant needs to press
the two blue buttons on the steering wheel simultaneously.
The participant wears a pair of eye-tracking glasses, and a
wearable device with GSR and PPG sensors for the biomet-
rics acquisition.

Table 2: Non-driving related tasks (NDRTs) used in our study
Task Type De�nition
Conversation with passenger Interacting with the experimenter who sits close to the participants
Using cellphone Interacting with their cellphones for texting and browsing
Reading articles Reading three types of articles (i.e.easy,mid,hard) on the tablet
Solving questions Answering 2-level arithmetic questions (i.e. easy and medium)

scenarios in a way to minimize the inevitable motion artifacts, we
performed necessary signal processing on the PPG and GSR signals
to remove potentially corrupted data, as discussed in Section 3.1.

4.3 Experimental design
A within-subjects design with independent variables of stress and
cognitive load manipulated by NDRTs and the TOR types was
conducted with three trials in a controlled environment as shown
in Figure 2. We designed driving scenarios in which the simulated
vehicle has enough functionality similar to AVs, such that the full
attention of the driver was not required at all times.

Non-Driving Related Tasks. We used four common NDRTs
with various di�culty levels and cognitive demand as shown in
Table 2. Participants used the tablet to read the designated articles
and answer the arithmetic questions. Additionally, they were asked
to use their own hand-held phones, needed for the browsing tasks.
Each participant performed all NDRTs with the frequency of four
times in each trial (except for solving the arithmetic questionswhich
occurred three times;15 × 3 in total). The conditions and the three
driving scenarios were counterbalanced among all participants to
reduce order and learning e�ects. To have natural behavior to the
greatest extent possible, participants were allowed to depart from
NDRTs to resume control of the vehicle at any given time. During
manual driving, participants controlled all aspects of the vehicle,
including lateral and longitudinal velocity control.

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

Takeover
time

D
riv

er
Sy

st
em

Conversation
Cellphone
Reading
Arithmetic

Incident

Switch
Control

Automated Driving Manual Driving

NDRT
State

Transition

Takeover

Driving

Automated
Driving

Start

NDRT

Sc
en

ar
io

t

Takeover
request (TOR)

Figure 3:A schematic viewof an example of a takeover situationused in our study, consisting of: 1) takeover timeline associated
with participants’ course of action; 2) system status; and 3) takeover situation. The vehicle was driven in the automated mode
to the point after the TOR initiation and transitioning preparation period. The ego vehicle is shown in red and the lead car is
white. When the Ego vehicle reaches its limits, the systemmay initiate (true alarm) or fail (no alarm) to initiate the TOR, and
the driver takes the control back from the automated system.

Driving Scenarios. The driving scenarios comprised a 4-lane
rural highway, with various trees and houses placed alongside the
roadway. We designed �ve representative situations where the
AVs may need to prompt a TOR to the driver, including novel and
unfamiliar incidents that appear on the same lane. Figure 3 shows
an example of a takeover situation used in our study. The designed
unplanned takeovers let participants react more naturally to what
they would normally do in AVs [39] or as introduced by Kim and
Yang [32], participants’ reaction times are in detectable categories.
In other words, participants have no previous knowledge of incident
appearance, which might happen among other incidents requiring
situational awareness and decision-making.

Takeover Requests. In order to incorporate DeepTake in the
design of adaptive in-vehicle alert systems in a way that not only
monitors driver capability of takeover, but also to enhance takeover
performance of automated driving, various types of TOR were re-
quired. An auditory alarm was used to inform participants about
an upcoming hazard that required takeover from the automated
system. The warning was a single auditory tone (350Hz, duration:
75ms) presented at the time of hazard detection (≈140m or ≈13sec
before the incidents, depending the speed of the vehicle). In a precar-
ious world, AVs should be expected to fail to always provide correct
TORs. Herein, the scenarios were constructed conservatively to
include �awed TORs by which subjects would not over-trust the
system’s ability. In other words, the scenario demands that the
participant be partially attentive and frequently perceive the envi-
ronment. In order to cover the scenarios that one might encounter
while driving an AV, we designed multiple critical types of TORs,
including an explicit alarm (true alarm), silent failure (no alarm),
and nuisance alarm (false alarm). True alarm indicates the situation
in which the system correctly detects the hazard and triggers a TOR,
no alarm represents the system’s failure to identify the existing haz-
ard, and false alarm presents misclassi�cation of a non-hazardous
situation as an on-road danger requiring takeover. We randomized

the 15 TOR occurrences in each trial (45 in total for each partici-
pant) with 6, 3, 6 repetitions for true alarm, no alarm, false alarm,
respectively. In addition, we also designed an information panel
where the participants could see the status of the vehicle along with
the cause of TOR (see Figure 2).

4.4 Procedure
Upon arrival in the lab, participants were asked to sign a consent
form and �ll out a short demographic and driving history ques-
tionnaires. Subsequently, they were briefed on how the automated
system functions, how to enable the system by simultaneously
pressing two blue buttons on the steering wheel, and what they
would experience during NDRTs. They were further instructed that
if the system detected a situation beyond its own capabilities to
handle, it would ask (true alarm) or fail to ask (no alarm) to take
over control. Afterward, participants completed a short training
drive along a highway for a minimum of 5 minutes to get familiar
with the driving and assure a common level of familiarity with the
setup, NDRTs, and auditory signals pitch.

Once the subjects felt comfortable with the driving tasks and
NDRTs, they proceeded to the main driving scenario. Prior to
beginning the main experiment, we calibrated the eye-tracking
glasses (repeated at the beginning of each trial) and set participants
up with the Shimmer3+ wearable device. Then, participants were re-
quired to complete the baseline NASA-TLX questionnaire followed
by the PSS-10 questionnaire. The participants were also instructed
to follow the lead car, stay on the current route, and follow tra�c
rules as they normally do. The participants were cautioned that
they were responsible for the safety of the vehicle regardless of
its mode (manual or automated). Therefore, they were required
to be attentive and to safely resume control of the vehicle in case
of failures and TORs. Since the scenarios were designed to have
three types of TORs, they needed to adhere to the given instruction
whenever they felt the necessity. The given instruction enabled the
drivers to respond meticulously whenever it was required and to

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

reinforce the idea that they were in charge of the safe operation
of the vehicle. Due to the system’s limitations, participants were
told to maintain the speed within the acceptable range (< 47mph).
The experiment was conducted utilizing scenarios consisting of
sunny weather conditions without considering the ambient tra�c.
The order of NDRT engagement was balanced for participants (see
Figure 3).

The remainder of the experiment consisted of three trials, each
containing 15 TORs, followed by a 5-minute break between trials.
At the end of each trial, participants were requested to �ll out the
NASA-TLX. After completion of the last trial, participants �lled out
the last NASA-TLX followed by a debrief and a $20 compensation.
The experiment took about one hour for each participant.

5 PERFORMANCE EVALUATION
We evaluate the performance of DeepTake framework using the
multimodal data collected from our user study. We describe the
baseline methods, metrics, results, and analysis as follows.

5.1 Baseline Methods
Overall, we obtained about 2 million observations to train, test, and
validate DeepTake with; 2560 observations per TOR × 15 TORs per
trial × 3 trials × 17 subjects. We evaluate the performance of Deep-
Take DNN-basedmodels with six otherML-based predictive models,
including Logistic Regression, Gradient Boosting, Random Forest,
Bayesian Network, Adaptive Boosting (Adaboost), and Regularized
Greedy Forest (RGF). Our process of choosing the ML models is
an exploratory task with trials and tests of multiple o�-the-shelf
algorithms and choosing those that perform the best. To evaluate
the prediction performance of DeepTake framework with other
ML models, we were obligated to utilize some feature importance
techniques. The reasons to apply feature importance techniques for
an ML algorithm are: to train the predictive model faster, reduce
the complexity and increase the interpretability and accuracy of
the model. In order to do so, after splitting the labeled data into
training, testing, and validation sets (see Section 3.3), we employ
the following feature importance methods on each training set:
Absolute Shrinkage and Selection Operator (LASSO), and random
forest. LASSO helps us with not only selecting a stable subset of
features that are nearly independent and relevant to the drivers’
takeover behavior, but also with dimensionality reduction. The
random forest method, on the other hand, ranks all of the features
based on their importance levels with the drivers’ takeover behav-
ior. The overlapped features chosen by the two methods were used
to train the ML-based classi�cation models of takeover behavior.

5.2 Metrics
We apply 10-fold cross-validation on training data to evaluate the
performance of selected features in the prediction of driver takeover
intention, time and quality. Cross-validation provides an overall
performance of the classi�cation and presents how a classi�er al-
gorithm may perform once the distribution of training data gets
changed in each iteration. In cross-validation, we utilize the training
fold to tune model hyper-parameters (e.g., regularization strength,
learning rate, and the number of estimators), which maximizes
prediction performance. Therefore, we train predictive models with

the best hyper-parameters. Cross-validation randomly partitions
the training data into n subsets without considering the distribution
of data from a subject in each set. A possible scenario is that data
from one subject could be unevenly distributed in some subsets,
causing overestimation of the prediction performance of a model.
To avoid this situation, we check the subjects’ identi�ers in both
the training and testing sets to ensure that they belong to just one
group. We achieve this by forcing the subject to be in one group.
To determine the accuracy of the binary classi�cation of takeover
intention performed by predictive models, accuracy was de�ned as
��� = ��+��

��+��+��+�� (TP, TN, FP, and FN represent True Positive,
True Negative, False Positive, and False Negative, respectively). For
the multi-class classi�cation of takeover time and quality, we used
the average accuracy per class. We also used the metric of weighted
F1 scores given by

�	1 =
�∑

�=1

2 × �
� × ���
�
� + ���

×�� , (1)

where �
� =
∑�

�=1
���

���+���
� is the precision, ��� =

∑�
�=1

���
���+���
� is the

recall, and�� is the weight of the ��ℎ class depending on the number
of positive examples in that class. It is worth mentioning that to deal
with our imbalanced data, where the number of observations per
class is not equally distributed, DeepTake framework along with
ML-based predictive models use SMOTE to have a well-balanced
distribution within class (see Section 3.3).

Given multiple classi�ers, we use the Receiver Operating Char-
acteristic (ROC) curve to compare the performance of DeepTake
alongside other ML-based models. The ROC curve is a widely-
accepted method that mainly shows the trade-o� between TP and
FP rates. A steep slope at the beginning of the curve shows a higher
true positive (correct) classi�cation of the algorithm, whereas in-
creasing the FP rate causes the curve to �atten. The ROC curve
provides an e�ective way to summarize the overall performance of
classi�cation algorithms by its only metric, AUC. The AUC values
provided in Figure 4 can be interpreted as the probability of cor-
rectly classifying the driver takeover behavior into the candidate
category compared to a random selection (black line in Figure 4).

In addition, we use the confusion matrix to further illustrate the
summary of DeepTake’s performance on the distinction of takeover
intention, time, and quality per class.

5.3 Results and Analysis
Multiple classi�cation algorithms were employed to compare the
performance of DeepTake on obtaining a reliable discriminator of
driving takeover behavior, including intention, time, and quality.
As the prediction of driver takeover time and quality are contingent
upon the driver’s intention to take over from the autonomous
systems after receiving TOR, the classi�cation algorithms were
initially carried out on this �rst stage of driver takeover prediction,
followed by takeover time and quality.

Takeover intention.Analysis of the binary classi�cation of dri-
vers’ takeover intention is shown in Table 3. The results show that
DeepTake outperforms other ML-based models. However, among
the ML-based algorithms, RGF attains the highest accuracy and
weighted F1 score (92% and 89%) followed by AdaBoost (88% and

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 4: The ROC curve comparison of our DeepTake and six ML classi�cation algorithms for classi�cation of takeover
behavior: (a) takeover intention, (b) takeover time, and (c) takeover quality. The ROC curve shows the average performance of
each classi�er and the shadowed areas represent the 95% con�dence interval. The macro AUC associated with each classi�er
is shown where AUC value of 0.5 refers to a chance.[Best viewed in color]

88%) and Logistic Regression (77% and 88%). Moreover, ROC was
applied in order to better evaluate each of the classi�ers. Figure 4.a
shows ROC curves and AUC values for all six MLmodels along with
DeepTake to infer the binary classi�cation of takeover intention.
Although DeepTake shows outperformance on correctly classify-
ing a driver’s intention (AUC=0.96) using the multimodal features,
RGF shows promising performance with an AUC of 0.94. Similar
to the accuracy level, AdaBoost had a slightly lower performance
with an AUC= 0.91. Furthermore, we obtained the confusion matrix
for takeover intention (Figure 6.a) showing that the percentage of
misclassi�cations is insigni�cant. Table 3, together with the results
obtained from the AUC in Figure 4.a and the confusion matrix in
Figure 6.a, ensure that our multimodal features with the right DNN
classi�er surpass the takeover intention prediction.

Table 3: Classi�cation performance comparison.
Target value Classi�er Accuracy W-F11 score

Takeover Intention

Logistic Regression 0.77 0.81
Gradient Boosting 0.76 0.75
RF2 0.75 0.72
Naive Bayes 0.71 0.66
Ada Boost 0.88 0.87
RGF3 0.92 0.89
DeepTake 0.96 0.93

Takeover Time

Logistic Regression 0.47 0.45
Gradient Boosting 0.47 0.46
RF 0.44 0.45
Naive Bayes 0.36 0.38
Ada Boost 0.64 0.58
RGF 0.73 0.71
DeepTake 0.93 0.87

Takeover Quality

Logistic Regression 0.65 0.63
Gradient Boosting 0.60 0.59
RF 0.53 0.52
Naive Bayes 0.41 0.39
Ada Boost 0.42 0.39
RGF 0.82 0.77
DeepTake 0.83 0.78

1: Weighted F1-score; 2:Random Forest; 3:Regularized Greedy Forests

Takeover time.DeepTake’s promising performance in takeover
intention estimation leads us to a more challenging multi-class
prediction of driver takeover time. As some of the ML-based models
attained reasonably high accuracy in the binary classi�cation of
takeover, their performances, along with our DeepTake DNN based

0.90

0.91

0.92

Ac
cu

ra
cy

0 50 100 150 200 250 300 350 400

0.19

0.21

Epoch

Lo
ss

0.23

0.25

train
test

Figure 5: The top graph shows the prediction accuracy of
training and test sets for 400 epochs, whereas the bottom
graph indicates the loss for DeepTake on prediction of three
classes of low-, mid-, and high- takeover time.

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

Figure 6: Confusionmatrix for the prediction of takeover behavior.The results are averaged over 10 fold cross validation splits.
(a) Binary class takeover intention takeover(TK) vs. Not Takeover(NTK), (b) 3-Class classi�cation results of takeover time, (c)
3-class classi�cation of takeover quality.

in classifying multi-class classi�cation of takeover time could assess
the robustness of the DeepTake.

Figure4.b shows a comparison amongst the models explored in
this paper along with DeepTake for prediction of takeover time. It
displays that DeepTake produces the best overall result with anAUC
value of 0.96 ± 0.02 for each takeover low-, mid-, and high- time. We
next consider the accuracy comparison of our DeepTake model with
other classi�er algorithms, reported in Table 3. It is evident that
DeepTake outperforms all of the classic algorithms. In the three-
class classi�cation of takeover time (low, mid, high), DeepTake
achieves a weighted-F1 score of 0.87, thereby achieving the best
performance on this task by a substantially better accuracy result
of 92.8%. Among the classi�ers, RGF and AdaBoost still performed
better (73.4% and 64.1%). As shown in Figure 5, DeepTake gained
a high accuracy for both the training and testing sets. However,
the model did not signi�cantly improve and stayed at around 92%
accuracy after the epoch 250.

To capture a better view of the performance of DeepTake on
the prediction of each class of takeover time, we also computed
the confusion matrix. Figure 6 displays the performance of Deep-
Take DNN model as the best classi�er of three-class takeover time.
As the diagonal values represent the percentage of elements for
which the predicted label is equal to the true label, it can be seen
that the misclassi�cation in medium takeover time is the highest.
Also, marginal misclassi�cations are found in the 2%-5% of the
high and low takeover time classes, respectively. Overall, all three
evaluation metrics of AUC, accuracy, and confusion matrix indicate
that DeepTake robustness and promising performances in correctly
classifying the three-class takeover time.

Takeover quality. The test accuracy results of the 3-class classi-
�cation of all classi�ers are presented in Table 3. DeepTake achieves
the highest accuracy with an average takeover quality of 83.4%.
While the value of RGF was close to DeepTake, the rest of the al-
gorithms were not reliable enough to discriminate each class of
takeover. However, we should note that RGF training time is very
slow and it takes about two times longer than DeepTake to perform
prediction.

In addition, Figure 4.c presents the multi-class classi�cation of
takeover quality. Analysis of the discriminatory properties of Deep-
Take achieve the highest AUC of 0.92 ± 0.01 scores among the
other models for each individual class. RGF model yields an im-
pressive average macro AUC of 0.91. Such a model indicates a
high-performance achievement with informative features.

We further investigated DeepTake robustness in correctly classi-
fying each class of takeover quality and the results achieved by the
method are shown in Figure 6.c. For the 3-class quality estimation,
DeepTake achieved an average accuracy of 87.2%.

6 DISCUSSION
6.1 Summary of major �ndings
In the current design of takeover requests, AVs do not account
for human cognitive and physical variability, as well as their pos-
sibly frequent state changes. In addition, most previous studies
emphasize the high-level relationships between certain factors and
their impacts on takeover time or quality. However, a safe takeover
behavior consists of a driver’s willingness and readiness together.
The focus of this paper is to utilize multimodal data into a robust
framework to reliably predict the three main aspects of drivers’
takeover behavior: takeover intention, time and quality. To the best
of our knowledge, the DeepTake framework is the �rst method for
the estimation of all three components of safe takeover behavior
together within the context of AVs and it has also achieved the high-
est accuracy compared to previous studies predicting each aspect
individually. To ensure the reliability of DeepTake’s performance,
we applied multiple evaluation metrics and compared the results
with six well-known classi�ers. Despite the promising accuracy
of some of the classi�ers, namely the RGF classi�er, the accuracy
of DeepTake surpassed in its prediction of takeover behavior. In
general, our model performed better in classifying driver takeover
intention, time and quality with an average accuracy of 96%, 93%,
and 83%, respectively.

In order to further assess the robustness of DeepTake, we in-
crease the number of classes to the more challenging �ve-class
classi�cation of takeover time where the classes de�ned as “lowest”

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 7: Confusion matrix for the prediction of �ve classes
of driver takeover time.

when � < 1.5� , “low” when 1.5� ≤ � < 2.6� , “medium” when
2.6� ≤ � < 4.7� , “high” when 4.7� ≤ � ≤ 6.1� , or “highest” when
� > 6.1� . Figure 7 represents the performance of DeepTake on clas-
sifying the �ve-class takeover time. Although DeepTake was not
as distinctive in �ve-class classi�cation as in the three-class, it still
achieved promising results. Lowest, high, and medium takeover
times are the top three pairs that were the most frequently misclas-
si�ed by the DNN model. The reason might be that the selected
features do not have the required distinctive characteristics to per-
fectly divide the low and medium takeover time. In each class, it
could still distinguish between �ve other classes with an average
accuracy of 77%. With a future larger amount of data collection
satisfying each class need, DeepTake could further improve its
distinctive aspect of each feature for more precise classi�cation.

6.2 Descriptive analysis of takeover time and
quality

Although DeepTake takes advantage of a DNN-based model inte-
grated into its framework, understanding the reasons behind its
predictions is still a black-box and a challenging problemwhich will
be tackled in our future works. However, to comprehend the e�ects
of multimodal variables on takeover time and quality, a repeated
measure Generalized Linear Mixed (GLM) model with a signi�cance
level of
 = 0.05 to assess the correlation of suboptimal features
was used to predict takeover time and quality. The analysis of the
results shows the signi�cant main e�ect of NDRTs on takeover
time and quality (3,28 = 13.58, � < 0.001) followed by �xation se-
quence (1,28 = 35.87, � < 0.001) and vehicle velocity (1,28 = 13.06,
� < 0.001). Post-hoc tests using Bonferroni demonstrated a higher
impact of interaction with the tablet and reading articles (� < 0.001)
as opposed to a conversation with passengers. This result could be
based on the amount of time spent and the level of cognitive load on
the takeover task. This �nding is aligned with the previous results
of [20, 21]. Additionally, there was no signi�cant e�ect of brake and
throttle pedal angle on the takeover time(1,28 = 3.05, � = 0.085)
and quality (1,28 = 1.27 � = 0.256). This could be because our sce-
narios did not take place on crowded roads and participants were

not forced to adopt a speci�c behavior after the TOR. Therefore,
they could maneuver the vehicle without signi�cant adjustment to
either pedal.

On the other hand, takeover quality tied into drivers’ lane keep-
ing control and was impacted by the alarm type and the category
of takeover time shown in Figure 8. Although we did not consider
the type of alarm and category of takeover time for prediction of
takeover behavior as they could simply manipulate DeepTake out-
comes by providing insights about the future, it is worth additional
investigation of their impacts on the takeover quality. Since partici-
pants’ takeover times and the speed of the vehicle on the manual
driving were di�erent, Figure 8 shows the average time of TOR.
The top graph in Figure 8 depicts the average lateral position of
the vehicle with respect to no alarm and true alarm. These two
types of the alarm were considered due to the necessity of taking
over. Under the impact of the true alarm, the vehicle deviates less
than when there is no alarm, yet not signi�cantly (2,28 = 7.07,
� = 0.78). Moreover, the drivers performed more abrupt steering
wheel maneuvers to change lanes on true alarm. Similarly, the bot-
tom graph in Figure 8 shows the lateral position with respect to
di�erent takeover times (low, mid, and high). It can be seen that the
longer the takeover time is, the farther the vehicle deviates from
the departure lane. Di�erences in takeover time were also analyzed
to investigate the takeover quality. The main e�ect of the type of
takeover time was not signi�cant (2,19 = 0.44). Although prior
research has revealed various timing e�orts to fully stabilize the
vehicle [42], our observations are comparable to [45] and [5].

6.3 Implications on the design of future
interactive systems

We believe that our human-centered framework makes a step to-
wards enabling a longer interaction with NDRTs for automated
driving. DeepTake helps the system to constantly monitor and pre-
dict the driver’s mental and physical status by which the automated
system can make optimal decisions and improve the safety and
user experience in AVs. Speci�cally, by integrating the DeepTake
framework into the monitoring systems of AVs, the automated sys-
tem infers when the driver has the intention to takeover through
multiple sensor streams. Once the system con�rms a strong pos-
sibility of takeover intention, it can adapt its driving behavior to
match the driver’s needs for acceptable and safe takeover time and
quality. Therefore, a receiver of TOR can be ascertained as having
the capability to take over properly, otherwise, the system would
have allowed the continued engagement in NDRT or warned about
it. Thus, integration of DeepTake into the future design of AVs facili-
tates the human and system interaction to be more natural, e�cient
and safe. Since DeepTake should be used in safety-critical appli-
cations, we further validated it to ensure that it meets important
safety requirements [26]. We analyzed DeepTake sensitivity and
robustness with several techniques using the Marabou veri�cation
tool. The sensitivity analysis provides insight into the importance of
input features, in addition to providing formal guarantees with re-
spect to the regions in the input space where the DeepTake behaves
as expected.

DeepTake framework provides a promising new direction for
modeling driver takeover behavior to lessen the e�ect of the general

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

TOR

TOR

Figure 8: Average trajectories when drivers took over control from automated system after receiving TORs. Top graph shows
the lateral position of the vehicle with respect to no alarm (silent failure) and true alarm (explicit alarm). Bottom graph shows
the lateral position of the vehicle for three categories of takeover time (low,mid, and high). The light shaded area representing
standard deviation at each time point.

and �xed design of TORs which generally considers homogeneous
takeover time for all drivers. This is grounded in the design of
higher user acceptance of AVs and dynamic feedback [19, 55]. The
information obtained by DeepTake can be conveyed to passengers
as well as other vehicles letting their movement decisions have a
higher degree of situational awareness. We envision that DeepTake
would help HCI researchers and designers to create user interfaces
and systems for AVs that adapt to the drivers’ state.

6.4 Limitations and future work
The following limitations should be taken into consideration for
future research and development of DeepTake.
First, it is acknowledged that the DeepTake dataset is vulnerable
to the low �delity driving simulator used for data collection. It is
possible that the takeover behavior of subjects were in�uenced by
the simplicity of driving setup and activities. To apply DeepTake on
the road, we will need more emphasis on various user’s activities
and safety, and exclude subjective surveys causing biases. Second,
while we increased the number of classes, future development
of DeepTake should predict takeover time numerically. For this
purpose, a larger dataset will be needed which accounts for a high
variation of individual takeover time and probabilistic nature of

DNNs by which the DeepTake framework can still learn and reliably
predicts takeover time.

Third, although we tried to avoid over�tting, it is possible that
DeepTake emphasized more on few features that frequently ap-
peared in TORs, and the performance may not be the same if more
scenarios are being tested. Thus, DeepTake decision boundaries
need to be experimented with di�erent adversarial training tech-
niques. Forth, DeepTake lacks using real-world data which often
signi�cantly di�erent and could potentially impact the results of
DeepTake framework. Testing the framework on real-world data
helps users to gain con�dence in DeepTake’s performance. Deep-
Take was developed and assessed o�ine using a driving simulator
in a controlled environment. Future work should explore the deploy-
ment of DeepTake online and in the wild for real-world applications
in future AVs. We plan to integrate the DeepTake and its veri�cation
results [26] into the safety controller, which will be then evaluated
using the on-road vehicle. In our future work we also plan to try
to reduce the number of features in the model by using the results
from the sensitivity analysis along with feature importance analysis
techniques (i.e. LIME and SHAP) to discover features that may be
able to be dropped from the model.

DeepTake: Prediction of Driver Takeover Behavior using Multimodal Data CHI ’21, May 8–13, 2021, Yokohama, Japan

7 CONCLUSION
In this work, we present DeepTake, a novel method that predicts
driver takeover intention, time and quality using data obtained
from the vehicle, wearable sensors, and a self-administered survey
taken before driving. By using DNN-based models, DeepTake en-
ables prediction of driver takeover intention, time and quality, all
of which are crucial in ensuring the safe takeover of an automated
vehicle. Our evaluation showed that DeepTake outperforms the
best accuracy results of prior work on takeover prediction with an
accuracy of 96 %, 93 %, and 83% for the multi-class classi�cation of
takeover intention, time and quality, respectively. As prior studies
demonstrated, alarming drivers when the system detects a situa-
tion requiring takeover does not guarantee safe driver takeover
behavior [33, 34, 40]. We believe that accurate takeover prediction
a�orded by DeepTake would allow drivers to work on non-driving
related tasks while ensuring that they safely take over the control
when needed. DeepTake opens up new perspectives for HCI re-
searchers and designers to create user interfaces and systems for
AVs that adapt to the drivers’ context.

8 ACKNOWLEDGMENT
We would like to thank Prof. Corina Păsăreanu from Carnegie Mel-
lon University and Prof. Radu Calinescu from University of York
for their valuable inputs, and John Grese for his help in evaluating
DeepTake with a high number of epochs. This work was supported
in part by National Science Foundation CCF-1942836 grant, As-
suring Autonomy International Programme, and Toyota InfoTech
Labs.

REFERENCES
[1] Areen Alsaid, John D Lee, and Morgan Price. 2019. Moving into the loop: An

investigation of drivers’ steering behavior in highly automated vehicles. Human
factors (2019), 0018720819850283.

[2] Frauke L Berghöfer, Christian Purucker, Frederik Naujoks, KatharinaWiedemann,
and Claus Marberger. 2018. Prediction of take-over time demand in conditionally
automated driving-results of a real world driving study. In Proceedings of the
Human Factors and Ergonomics Society Europe Chapter 2018 Annual Conference.
69–81.

[3] Shadan Sadeghian Borojeni, Lars Weber, Wilko Heuten, and Susanne Boll. 2018.
From reading to driving: priming mobile users for take-over situations in highly
automated driving. In Proceedings of the 20th International Conference on Human-
Computer Interaction with Mobile Devices and Services. 1–12.

[4] Christian Braunagel, Wolfgang Rosenstiel, and Enkelejda Kasneci. 2017. Ready
for take-over? A new driver assistance system for an automated classi�cation of
driver take-over readiness. IEEE Intelligent Transportation Systems Magazine 9, 4
(2017), 10–22.

[5] Mercedes Bueno, Ebru Dogan, F Hadj Selem, Eric Monacelli, Serge Boverie, and
Anne Guillaume. 2016. How di�erent mental workload levels a�ect the take-over
control after automated driving. In 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2040–2045.

[6] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and Philip Kegelmeyer. 2002.
SMOTE: synthetic minority over-sampling technique. Journal of arti�cial intelli-
gence research 16 (2002), 321–357.

[7] Sheldon Cohen, Tom Kamarck, and Robin Mermelstein. 1983. A global measure
of perceived stress. Journal of health and social behavior (1983), 385–396.

[8] G Coley, A Wesley, N Reed, and I Parry. 2009. Driver reaction times to familiar,
but unexpected events. TRL Published Project Report (2009).

[9] SAE On-Road Automated Vehicle Standards Committee et al. 2018. Taxonomy
and de�nitions for terms related to driving automation systems for on-road motor
vehicles. SAE International: Warrendale, PA, USA (2018).

[10] Mihaly Csikszentmihalyi and Mihaly Csikzentmihaly. 1990. Flow: The psychology
of optimal experience. Vol. 1990. Harper & Row New York.

[11] Nachiket Deo and Mohan M Trivedi. 2019. Looking at the driver/rider in au-
tonomous vehicles to predict take-over readiness. IEEE Transactions on Intelligent
Vehicles (2019).

[12] Nicole Dillen, Marko Ilievski, Edith Law, Lennart E Nacke, Krzysztof Czarnecki,
and Oliver Schneider. 2020. Keep Calm and Ride Along: Passenger Comfort and
Anxiety as Physiological Responses to Autonomous Driving Styles. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–13.

[13] Ebru Dogan, Vincent Honnêt, Stéphan Masfrand, and Anne Guillaume. 2019.
E�ects of non-driving-related tasks on takeover performance in di�erent takeover
situations in conditionally automated driving. Transportation research part F:
tra�c psychology and behaviour 62 (2019), 494–504.

[14] Na Du, Jinyong Kim, Feng Zhou, Elizabeth Pulver, Dawn Tilbury, Lionel Robert,
Anuj Pradhan, X Jessie Yang, et al. 2020. Evaluating E�ects of Cognitive Load,
Takeover Request Lead Time, and Tra�c Density on Drivers’ Takeover Perfor-
mance in Conditionally Automated Driving. AutomotiveUI (2020).

[15] Na Du, Feng Zhou, Elizabeth Pulver, Dawn Tilbury, Lionel P Robert, Anuj K Prad-
han, and X Jessie Yang. 2020. Predicting Takeover Performance in Conditionally
Automated Driving. In Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–8.

[16] Na Du, Feng Zhou, Elizabeth M Pulver, Dawn M Tilbury, Lionel P Robert, Anuj K
Pradhan, and X Jessie Yang. 2020. Examining the e�ects of emotional valence
and arousal on takeover performance in conditionally automated driving. Trans-
portation research part C: emerging technologies 112 (2020), 78–87.

[17] Na Du, Feng Zhou, Elizabeth M Pulver, Dawn M Tilbury, Lionel P Robert, Anuj K
Pradhan, and X Jessie Yang. 2020. Predicting driver takeover performance in
conditionally automated driving. Accident Analysis & Prevention 148 (2020),
105748.

[18] Mahdi Ebnali, Kevin Hulme, Aliakbar Ebnali-Heidari, and Adel Mazloumi. 2019.
How does training e�ect users’ attitudes and skills needed for highly automated
driving? Transportation research part F: tra�c psychology and behaviour 66 (2019),
184–195.

[19] Fredrick Ekman, Mikael Johansson, and Jana Sochor. 2017. Creating appropri-
ate trust in automated vehicle systems: A framework for HMI design. IEEE
Transactions on Human-Machine Systems 48, 1 (2017), 95–101.

[20] Alexander Eriksson and Neville A Stanton. 2017. Takeover time in highly au-
tomated vehicles: noncritical transitions to and from manual control. Human
factors 59, 4 (2017), 689–705.

[21] Anna Feldhütter, Christian Gold, Sonja Schneider, and Klaus Bengler. 2017. How
the duration of automated driving in�uences take-over performance and gaze
behavior. In Advances in ergonomic design of systems, products and processes.
Springer, 309–318.

[22] Anna Feldhütter, Dominik Kroll, and Klaus Bengler. 2018. Wake up and take over!
The e�ect of fatigue on the take-over performance in conditionally automated
driving. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2080–2085.

[23] Hannah J Foy and Peter Chapman. 2018. Mental workload is re�ected in driver
behaviour, physiology, eye movements and prefrontal cortex activation. Applied
ergonomics 73 (2018), 90–99.

[24] Michael A Gerber, Ronald Schroeter, Li Xiaomeng, and Mohammed Elhenawy.
2020. Self-Interruptions of Non-Driving Related Tasks in Automated Vehicles:
Mobile vs Head-Up Display. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–9.

[25] Christian Gold, Moritz Körber, David Lechner, and Klaus Bengler. 2016. Taking
over control from highly automated vehicles in complex tra�c situations: the
role of tra�c density. Human factors 58, 4 (2016), 642–652.

[26] John M Grese, Corina Pasareanu, and Erfan Pakdamanian. 2021. Formal Analysis
of a Neural Network Predictor inShared-Control Autonomous Driving. In AIAA
Scitech 2021 Forum. 1580.

[27] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[28] Sebastian Hergeth, Lutz Lorenz, and Josef F Krems. 2017. Prior familiarization
with takeover requests a�ects drivers’ takeover performance and automation
trust. Human factors 59, 3 (2017), 457–470.

[29] iMotions. 2015. A�ectiva iMotions Biometric Research Platform. https://imotions.
com/

[30] ISO 21959:2020 2020. Road vehicles — Human performance and state in the context
of automated driving. Standard. International Organization for Standardization.

[31] Mishel Johns, Brian Mok, David Sirkin, Nikhil Gowda, Catherine Smith, Walter
Talamonti, and Wendy Ju. 2016. Exploring shared control in automated driving.
In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 91–98.

[32] Hyung Jun Kim and Ji Hyun Yang. 2017. Takeover requests in simulated partially
autonomous vehicles considering human factors. IEEE Transactions on Human-
Machine Systems 47, 5 (2017), 735–740.

[33] Moritz Körber, Lorenz Prasch, and Klaus Bengler. 2018. Why do I have to drive
now? Post hoc explanations of takeover requests. Human factors 60, 3 (2018),
305–323.

[34] Jiwon Lee and Ji Hyun Yang. 2020. Analysis of driver’s EEG given take-over
alarm in SAE level 3 automated driving in a simulated environment. International
journal of automotive technology 21, 3 (2020), 719–728.

CHI ’21, May 8–13, 2021, Yokohama, Japan E. Pakdamanian et al.

[35] Alexander Lotz and Sarah Weissenberger. 2018. Predicting take-over times of
truck drivers in conditional autonomous driving. In International Conference on
Applied Human Factors and Ergonomics. Springer, 329–338.

[36] Tyron Louw, Gustav Markkula, Erwin Boer, Ruth Madigan, Oliver Carsten, and
Natasha Merat. 2017. Coming back into the loop: Drivers’ perceptual-motor
performance in critical events after automated driving. Accident Analysis &
Prevention 108 (2017), 9–18.

[37] Udara E Manawadu, Hiroaki Hayashi, Takaaki Ema, Takahiro Kawano, Mitsuhiro
Kamezaki, and Shigeki Sugano. 2018. Tactical-Level Input with Multimodal
Feedback for Unscheduled Takeover Situations in Human-Centered Automated
Vehicles. In 2018 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM). IEEE, 634–639.

[38] Nikolas Martelaro, Jaime Teevan, and Shamsi T Iqbal. 2019. An Exploration of
Speech-Based Productivity Support in the Car. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems. 1–12.

[39] Rod McCall, Fintan McGee, Alexander Mirnig, Alexander Meschtscherjakov,
Nicolas Louveton, Thomas Engel, and Manfred Tscheligi. 2019. A taxonomy of
autonomous vehicle handover situations. Transportation research part A: policy
and practice 124 (2019), 507–522.

[40] Anthony D McDonald, Hananeh Alambeigi, Johan Engström, Gustav Markkula,
Tobias Vogelpohl, Jarrett Dunne, and Norbert Yuma. 2019. Toward computational
simulations of behavior during automated driving takeovers: a review of the
empirical and modeling literatures. Human factors 61, 4 (2019), 642–688.

[41] Bruce Mehler, Bryan Reimer, and Joseph F Coughlin. 2012. Sensitivity of physio-
logical measures for detecting systematic variations in cognitive demand from a
working memory task: an on-road study across three age groups. Human factors
54, 3 (2012), 396–412.

[42] Natasha Merat, A Hamish Jamson, Frank CH Lai, Michael Daly, and Oliver MJ
Carsten. 2014. Transition to manual: Driver behaviour when resuming control
from a highly automated vehicle. Transportation research part F: tra�c psychology
and behaviour 27 (2014), 274–282.

[43] Brian Mok, Mishel Johns, David Miller, and Wendy Ju. 2017. Tunneled in: Drivers
with active secondary tasks need more time to transition from automation. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
2840–2844.

[44] Frederik Naujoks, Christoph Mai, and Alexandra Neukum. 2014. The e�ect of
urgency of take-over requests during highly automated driving under distraction
conditions. Advances in Human Aspects of Transportation 7, Part I (2014), 431.

[45] Frederik Naujoks, Christian Purucker, Katharina Wiedemann, and Claus Mar-
berger. 2019. Noncritical State Transitions During Conditionally Automated
Driving on German Freeways: E�ects of Non–Driving Related Tasks on Takeover
Time and Takeover Quality. Human factors 61, 4 (2019), 596–613.

[46] Nargess Nourbakhsh, Yang Wang, Fang Chen, and Rafael A Calvo. 2012. Us-
ing galvanic skin response for cognitive load measurement in arithmetic and
reading tasks. In Proceedings of the 24th Australian Computer-Human Interaction
Conference. 420–423.

[47] Erfan Pakdamanian, Lu Feng, and Inki Kim. 2018. The e�ect of whole-body
haptic feedback on driver’s perception in negotiating a curve. In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, Vol. 62. SAGE
Publications Sage CA: Los Angeles, CA, 19–23.

[48] Erfan Pakdamanian, Nauder Namaky, Shili Sheng, Inki Kim, James Arthur Coan,
and Lu Feng. 2020. Toward Minimum Startle After Take-Over Request: A Prelim-
inary Study of Physiological Data. In 12th International Conference on Automotive
User Interfaces and Interactive Vehicular Applications. 27–29.

[49] Julie Paxion, Edith Galy, and Catherine Berthelon. 2014. Mental workload and
driving. Frontiers in psychology 5 (2014), 1344.

[50] Margherita Peruzzini, Mara Tonietti, and Cristina Iani. 2019. Transdisciplinary
design approach based on driver’s workload monitoring. Journal of Industrial
Information Integration 15 (2019), 91–102.

[51] Sebastiaan Petermeijer, Fabian Doubek, and Joost de Winter. 2017. Driver re-
sponse times to auditory, visual, and tactile take-over requests: A simulator study
with 101 participants. In 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). IEEE, 1505–1510.

[52] Ioannis Politis, Patrick Langdon, Damilola Adebayo, Mike Bradley, P John Clark-
son, Lee Skrypchuk, Alexander Mouzakitis, Alexander Eriksson, James WH
Brown, Kirsten Revell, et al. 2018. An evaluation of inclusive dialogue-based
interfaces for the takeover of control in autonomous cars. In 23rd International
Conference on Intelligent User Interfaces. 601–606.

[53] Jonas Radlmayr, Christian Gold, Lutz Lorenz, Mehdi Farid, and Klaus Bengler.
2014. How tra�c situations and non-driving related tasks a�ect the take-over
quality in highly automated driving. In Proceedings of the human factors and er-
gonomics society annual meeting, Vol. 58. Sage Publications Sage CA: Los Angeles,
CA, 2063–2067.

[54] Daniele Ruscio, Maria Rita Ciceri, and Federica Biassoni. 2015. How does a
collision warning system shape driver’s brake response time? The in�uence
of expectancy and automation complacency on real-life emergency braking.
Accident Analysis & Prevention 77 (2015), 72–81.

[55] Bobbie D Seppelt and John D Lee. 2019. Keeping the driver in the loop: Dynamic
feedback to support appropriate use of imperfect vehicle control automation.
International Journal of Human-Computer Studies 125 (2019), 66–80.

[56] Qiuyang Tang, Gang Guo, Zijian Zhang, Bingbing Zhang, and Yingzhang Wu.
2020. Olfactory Facilitation of Takeover Performance in Highly Automated
Driving. Human Factors (2020), 0018720819893137.

[57] RemoMA van der Heiden, Shamsi T Iqbal, and Christian P Janssen. 2017. Priming
drivers before handover in semi-autonomous cars. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. 392–404.

[58] Paul van Gent, Haneen Farah, Nicole van Nes, and Bart van Arem. 2019. HeartPy:
A novel heart rate algorithm for the analysis of noisy signals. Transportation
research part F: tra�c psychology and behaviour 66 (2019), 368–378.

[59] José Vicente, Pablo Laguna, Ariadna Bartra, and Raquel Bailón. 2011. Detection of
driver’s drowsiness by means of HRV analysis. In 2011 Computing in Cardiology.
IEEE, 89–92.

[60] Marcel Walch, Kristin Mühl, Johannes Kraus, Tanja Stoll, Martin Baumann, and
Michael Weber. 2017. From car-driver-handovers to cooperative interfaces: Vi-
sions for driver–vehicle interaction in automated driving. In Automotive user
interfaces. Springer, 273–294.

[61] Jingyan Wan and Changxu Wu. 2018. The e�ects of vibration patterns of take-
over request and non-driving tasks on taking-over control of automated vehicles.
International Journal of Human–Computer Interaction 34, 11 (2018), 987–998.

[62] Lora Warshawsky-Livne and David Shinar. 2002. E�ects of uncertainty, transmis-
sion type, driver age and gender on brake reaction and movement time. Journal
of safety research 33, 1 (2002), 117–128.

[63] JCF De Winter, Neville A Stanton, Josh S Price, and Harvey Mistry. 2016. The
e�ects of driving with di�erent levels of unreliable automation on self-reported
workload and secondary task performance. International journal of vehicle design
70, 4 (2016), 297–324.

[64] Philipp Wintersberger, Andreas Riener, Clemens Schartmüller, Anna-Katharina
Frison, and Klemens Weigl. 2018. Let me �nish before I take over: Towards
attention aware device integration in highly automated vehicles. In Proceedings
of the 10th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications. 53–65.

[65] Yanbin Wu, Ken Kihara, Yuji Takeda, Toshihisa Sato, Motoyuki Akamatsu, and
Satoshi Kitazaki. 2019. Assessing the Mental States of Fallback-Ready Drivers in
Automated Driving by Electrooculography. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC). IEEE, 4018–4023.

[66] Kathrin Zeeb, Axel Buchner, andMichael Schrauf. 2015. What determines the take-
over time? An integrated model approach of driver take-over after automated
driving. Accident Analysis & Prevention 78 (2015), 212–221.

[67] Kathrin Zeeb, Axel Buchner, and Michael Schrauf. 2016. Is take-over time all
that matters? The impact of visual-cognitive load on driver take-over quality
after conditionally automated driving. Accident Analysis & Prevention 92 (2016),
230–239.

[68] Kathrin Zeeb, Manuela Härtel, Axel Buchner, and Michael Schrauf. 2017. Why
is steering not the same as braking? The impact of non-driving related tasks
on lateral and longitudinal driver interventions during conditionally automated
driving. Transportation research part F: tra�c psychology and behaviour 50 (2017),
65–79.

[69] Bo Zhang, Joost de Winter, Silvia Varotto, Riender Happee, and Marieke Martens.
2019. Determinants of take-over time from automated driving: A meta-analysis
of 129 studies. Transportation research part F: tra�c psychology and behaviour 64
(2019), 285–307.

Appendix B Formal Analysis of a Neural Network Predictor in Shared-
Control Autonomous Driving

49

Formal Analysis of a Neural Network Predictor in
Shared-Control Autonomous Driving

John Grese∗

Carnegie Mellon University, CyLab

Corina Păsăreanu†

Carnegie Mellon University, CyLab and NASA Ames Research Center

Erfan Pakdamanian‡

University of Virginia, LinkLab

Autonomous driving systems may encounter scenarios where it is necessary to transfer
control to the human driver, for instance when encountering unpredictable dangerous road
conditions. To be able to do so safely, the autonomous system needs an estimate of how long
it will take for the human driver to take control of the vehicle. Deep neural networks can be
used for making such predictions, however proving that neural networks meet critical safety
requirements presents a challenge. We present a formally verified neural network which
predicts "Takeover-time" in a shared-control autonomous driving system. The network is
trained on data collected from a (semi-)autonomous driving simulator. We use Marabou
(a formal verification tool), to analyze the network’s sensitivity, local robustness, contextual
robustness, and to find adversarial inputs which produce unsafe outputs.

I. Objectives and Impacts
The work reported here is done within a project called Safe-SCAD — Safety of shared control in autonomous driving∗

whose objective is to answer how humans and machines can safely share control of an autonomous car. Ensuring
that drivers retain sufficient situational awareness to be able to take control of the vehicle in an emergency [1] is a
challenging problem. This is due to the uncertainties associated with measuring the level of situational awareness of
drivers while not in control of the vehicle, and with the mapping of such measures to takeover times. As emphasized in
the US Department of Transportation strategic documents, there is an urgent need for solutions to critical research
questions regarding driver transitions between automated and manual driving modes [2].

The Safe-SCAD project aims to extend, adapt and integrate the recent research and the latest advances from human
behavior and cognitive modeling, verification of deep neural networks, and automated controller synthesis to tackle
these challenges.

The project will make significant and generalizable impacts in the areas of:
• shared autonomy
• training and verification of machine learning
• monitoring of autonomous systems by human operators
The project’s team has designed and conducted a human subject study on a driving simulator located at University

of Virginia. The simulator is a PC-based system consisting primarily of three 30-inch monitors, a steering wheel,
accelerator and brake pedals, and eye tracking glasses. In this study, 20 subjects (11 female, 9 male) aged 18-30 (mean=
23.5, SD= 3.1) were recruited. All participants were hired at University of Virginia and were required to have normal
or corrected-to-normal vision, to not be susceptible to simulator sickness, and to have at least one year of driving
experience to be eligible for participation in this study. Before the experiment, participants were questioned as to
their age and driving experience. None of them had prior experience of interaction with autonomous vehicles. Three
participants’ data were later excluded from the analysis, due to biometric data loss and a large amount of missing values.
Participants received $20 to compensate for the time they spent in this study.

∗Carnegie Mellon University
†NASA
‡University of Virginia
∗This is a joint project between University of Virginia, University of York and Carnegie Mellon University, funded by the Assuring Autonomy

International Program from University of York, UK

1

Takeover
time

D
riv

er
Sy

st
em

Conversation
Cellphone
Reading
Arithmetic

Incident

Switch
Control

Automated Driving Manual Driving

NDRT
State

Transition

Takeover

Driving

Automated
Driving

Start

NDRT

Sc
en

ar
io

t

Takeover
request (TOR)

Fig. 1 A schematic view of an example of a takeover situation used in our study, consisting of: 1) takeover
timeline associated with participants’ course of action; 2) system status; and 3) takeover situation. The vehicle
was driven in the automated mode to the point after the TOR initiation and transitioning preparation period.
The ego-vehicle is shown in red and the lead car is white. When the ego-vehicle reaches its limits, the system
may initiate (true alarm) or fail (no alarm) to initiate the TOR, and the driver takes the control back from the
automated system.

The preliminary data from this study was used to train a neural network that achieves 86% accuracy of driver
takeover time prediction, with the takeover time organized into several categories, e.g. fast, med-fast, medium, med-slow,
and slow. In this paper we report on the formal verification of the neural network using the Marabou [3] verification tool
to analyze its robustness and sensitivity to input perturbations.

II. Takeover Time Network

A. User Study
The subjects were briefed about the semi-autonomous systems, the driving tasks and non-driving-tasks (NDRTs),

they proceeded to the main driving scenario. The participants were instructed to follow the lead car, stay on the current
route, and follow traffic rules as they normally do. Figure 1 illustrates the scenario that the participants went through in
this study. The participants were cautioned that they were responsible for the safety of the vehicle regardless of its
mode (manual or automated). As the vehicle approaches the obstacle, it alerts the driver with an alarm requesting that
the driver take control of the vehicle. "Takeover time" refers to the amount of time between when the "takeover request"
alarm (TOR) is triggered and when the driver has taken control (Takeover). It is calculated by subtracting the timestamps
of TOR and Takeover. Therefore, they were required to be attentive and to safely resume control of the vehicle in case of
failures and takeover requests (TORs). The given instruction enabled the drivers to respond meticulously whenever it
was required and to reinforce the idea that they were in charge of the safe operation of the vehicle. Due to the system’s
limitations, participants were told to maintain the speed within the acceptable range (< 47mph). The experiment was
conducted utilizing scenarios consisting of sunny weather conditions without considering the ambient traffic. In addition,
the order of NDRT engagement was balanced for participants (see Figure 1). The experiment consisted of three trials,
each containing 15 TORs, followed by a 5-minute break between trials.

B. Data Preparation
The goal of this project is to provide a procedure to not only reliably predict drivers’ takeover time before a TOR

initiation (reported in [4]), but also formally verify safety properties of the model. Hence, the taken procedure for
data preparation depends on the driving setting, collected data and the context. Herein, we incorporate data of drivers’
physiological measurements, as well as vehicle dynamic data. We initially apply data preprocessing techniques including
outlier elimination, missing value imputation using mean substitutions, and smoothing to reduce artifacts presented in
raw data. It is worth mentioning that we exclude any data stream providing insights about the unknown future (e.g.,

2

label lbound (ms) ubound (ms)
fast 0 1612

med-fast 1612 2802
med 2802 5180

med-slow 5180 6370
slow 6370 +inf
Table 1 Takeover time categories

type of alarm) or containing more than 50% missing value. The preprocessed time series data are then segmented into
10-second fixed time windows prior to the occurrences of TORs with the offset sliding window of 1, experimentally [4].
For instance, if TOR happened at T, we only used data captured in the fixed time window of (T-10s, T) and did not
include any data later than T. However, depending on specific applications and contextual requirements, the selected time
window length could vary. Subsequently, the segmented windows from modalities are processed to extract meaningful
features describing the attributes impacting takeover behavior.

For the eye movement, we acquire interpolated features extracted from raw data through iMotion software. The
extracted eye movement attributes include gaze position, pupil diameters of each eye, time to first fixation, and fixation
duration/sequence on the detected area of interest.

Finally, the generated features from each modality concatenated to create a rich vector representing driver takeover
attributes. The joint representations of all feature vectors with the provision of their associated labels are eventually fed
into neural network for training. The final processed dataset consists of 25 input features including: FixationDuration,
FixationSeq, FixationStart, FixationX, FixationY, GazeDirectionLeftZ, GazeDirectionRightZ, PupilLeft, PupilRight,
InterpolatedGazeX, InterpolatedGazeY, AutoThrottle, AutoWheel, CurrentThrottle, CurrentWheel, Distance3D, MPH,
ManualBrake, ManualThrottle, ManualWheel, RightLaneDist, RightLaneType, LeftLaneDist, LeftLaneType. These
features were labeled with 5 output targets of fast, med-fast, med, med-slow, slow.

C. Neural Network Architecture
These features are labeled into the five classes shown in Table 1 and one-hot encoded. Then, the minority classes

are upsampled to ensure that all of the classes are represented equally. The target (�) columns are separated from the
training data, and the input (�) values are scaled using standard scaling, which standardizes features by removing the
mean and scaling to the unit variance. The dataset is then divided, using 80% for training, 10% for testing, and 10% for
validation.

The neural network is a fully-connected feed-forward classifier with three hidden layers as shown in figure 2. The
input layer has 25 nodes. The three hidden layers have 21, 18, and 11 nodes, and use ReLU as the activation function.
The output layer has 5 nodes and uses Softmax. The input layer’s 25 inputs (�0 through �24) map to the feature names
listed in theData Preparation section. Inputs �0 through �10 are provided by the simulator’s eye tracking system, and
describe the driver’s fixation, gaze, and pupil diameter. Inputs �11 through �19 provide information related to both
autonomous and manual steering, braking, throttle, and vehicle speed. Inputs �20 through �24 provide information
around the vehicle such as lane type, position, and distance. The output layer’s 5 nodes (�0 through �4) represent the
takeover time class labels listed in table 1.

We utilize Softmax cross-entropy loss with an Adam optimizer and a learning rate of 0.001 to update the parameters
and train the network. In each iteration, we randomly sample a batch of data in order to compute the gradients with a
batch size of 16. Once the gradients are computed, the initiated parameters are updated. The early stopping method set
to 50 epochs prevents overfitting. The resulting network has an accuracy of ~86%.

Fig. 2 Neural Network

3

III. Verification with Marabou
Deep neural networks (DNNs) are increasingly used in safety-critical applications such as autonomous transport,

raising serious safety and security concerns. To address these concerns, DNNs need to be validated to ensure that
they meet important safety requirements. However, validation of DNNs is challenging due to the nature of data-driven
learning and lack of meaningful specifications. Evaluating sensitivity to input perturbations and robustness against
adversarial attacks is also challenging due to the huge input space and unclear boundaries.

In this paper we report our investigation of techniques that provide assurance guarantees for neural networks. The
problem is difficult as it is known that neural networks are unstable with respect to so called adversarial perturbations
[5, 6], which are (minimal) changes that cause the network to misclassify an input. They can be devised without
access to the training set [7] and are transferable [8] in the sense that an example misclassified by one network is also
misclassified by a network with a different architecture, even if it is trained on different data. Existing testing and
approximation techniques [6, 8–11] that can be used for the analysis of neural networks are inherently limited as they
can not provide guarantees.

To address this limitation, recent work has employed formal verification methods based on Satisfiability Modulo
Theory (SMT) that provide sound assurances that no adversarial examples exist within a given neighborhood of an input.
Marabou [3] is an SMT-based neural network verification framework which can be used to provide formal guarantees
about a neural network. Marabou works by accepting queries about the network’s properties and transforming these
queries into SMT constraint satisfaction problems. It is capable of accommodating networks with different activation
functions and topologies, and performs high-level reasoning on the network to curtail the search space and improve
performance. Common Marabou queries are expressed in terms of upper and lower bounds on the network’s inputs, and
an expected output. After solving a query, Marabou either returns "UNSAT", or "SAT" with a counterexample if one
was found.

Using Marabou, we performed local robustness checks, targeted robustness checks, a sensitivity analysis, and
data-driven verification on the takeover-time network. All verification was performed on an Amazon Web Services
t2.x-large EC2 instance with 16GB of RAM and a 64bit Intel(R) Xeon(R) E5-2686 v4 CPU @ 2.30GHz with 4 cores.

A. Local Robustness
Local robustness can be defined as the minimum perturbation ±� applied uniformly to all features (�0...�24) from

an single input �, which causes a change in the network’s prediction. We find the minimum ±� using Marabou by
evaluating a series of input queries with the lower bounds set to � − �, and the upper bounds set to � + � over a range of
values for � until finding the minimum ±� that causes the predicted label to change. Specifically, we perform something
similar to a binary search over the range of possible values for �. For each value of �, we perform a query for every label
other than the expected label for � to ensure that no other labels exist between ‖� − �‖ and ‖� + �‖. Using the value of �
we find from local robustness for a given input �, we are given the guarantee described by equation 1, which states that
for any input �′ such that the distance from � is smaller than �, the network will make the same prediction.

∀�′ �.�. ‖�′ − �‖ < � ⇒ � (�′) = � (�). (1)

We checked the network’s local robustness on a set of ~2500 inputs from the dataset. Table 2 shows the minimum
and average values of ±� grouped by label. With respect to the inputs we tested, the minimum observed � was 0.00011,
which belonged to the med class. The highest observed � was 0.65801, which belonged to the med-slow class. The class
with the lowest mean � was med-slow, and the class with the highest mean � was fast. We can see from figure 3 that the
� for the majority of inputs fell within the range 0.001 to 0.05. The runtime per input of the local robustness checks took
between ~1.2 seconds and ~61 minutes, with an average of ~4.9 minutes.

4

label mean � min � max �

fast 0.028733 0.00030 0.26471
med-fast 0.026576 0.00015 0.16012

med 0.027524 0.00011 0.13579
med-slow 0.023497 0.00040 0.65801

slow 0.026293 0.00033 0.19719
overall 0.026513 0.000110 0.658010

Table 2 Local robustness results

Fig. 3 Local robustness distribution

B. Targeted Robustness
We define targeted robustness as the minimum perturbation ±� applied uniformly to all features (�0...�24) of an

input � which produces a specific change in the network’s predicted label. Focusing on specific changes in the network’s
prediction provides more specific robustness guarantees than local robustness, and can also be helpful in finding targeted
adversarial inputs. The process for targeted robustness checks is similar to local robustness, however instead of proving
that only one label exists between � + � and � − �, we prove that the targeted label does not exist. The guarantee provided
by targeted robustness checks for a given � is described in equation 2, which states that for any input �′ such that the
distance from � is smaller than �, the network will not predict the target label.

∀�′ �.�. ‖�′ − �‖ < � ⇒ � (�′) ≠ target. (2)

Because safety is our primary goal, we targeted the most unsafe change in classification — slow inputs which change
to fast with a perturbation of �. The results of the targeted robustness checks on a set of 500 slow inputs can be seen in
Table 3. For the slow – fast target, the minimum � was 0.0013, the mean � was 0.073864, and the maximum � was
0.749950. We can see from the distribution in figure 4 that the � for the majority of inputs fell within the range 0.008 -
0.06.

The targeted robustness checks for the slow-fast target took longer to complete on average than the local robustness
checks, which is a little counter-intuitive because fewer queries are performed in the targeted robustness. The reason for
this is that the slow-fast target requires Marabou to work harder to find a counterexample. The runtime per input for our
targeted robustness checks took between ~0.7 seconds and ~78 minutes, with an average of ~10.7 minutes.

target mean � min � max �

slow – fast 0.073864 0.00130 0.749950

Table 3 Targeted robustness results

Fig. 4 Targeted robustness distribution

5

C. Sensitivity Analysis
To learn more about the model’s sensitivity to perturbations of individual features, we performed a sensitivity analysis

using Marabou. Sensitivity can be defined as the minimum perturbation � applied to an individual feature �� of an input
� which causes a change in the network’s prediction. Perturbing each feature individually also provides some visibility
into feature importance. In addition, using a formal verification tool such as Marabou for this type of analysis also gives
strong formal guarantees. We took two different approaches to analyzing the network’s sensitivity — symmetric and
asymmetric. The symmetric approach considers a single value of � for the negative and positive perturbations to each
feature (�0...�24), which extends the space around �� symmetrically. The asymmetric approach considers individual
values of � for the negative and positive perturbations (�� and ��) to each feature. These two different approaches to
sensitivity analysis yield slightly different pictures of the network’s sensitivity. In the following two sections, we discuss
the symmetric and asymmetric sensitivity analyses in more detail.

1. Symmetric Sensitivity Analysis
The symmetric variant of the sensitivity analysis searches the input space around each feature �� of an input � to find

the minimum value ±� which causes a change in prediction. The process is similar to local robustness, however we only
perturb a single feature at a time. Using Marabou, we evaluate different values of ±� by generating input queries for
each one with the lower bound of �� set to �� − � and the upper bound set to �� + � until discovering the minimum �
that causes a change in the predicted label. For this type of sensitivity analysis, Marabou provides the guarantee that
any perturbation smaller than ±� applied to a single feature �� will not change the network’s prediction. Equation 3
describes this guarantee provided by Marabou for a feature �� of an input �.

∀��′ s.t. ‖��′ − �� ‖ < �, � ([�0...��′...��]) = � ([�0...�� ...��]) (3)

Using this method, we analyzed the sensitivity of all 25 features on ~2500 inputs from the dataset. Figure 5 shows
the results from the symmetric sensitivity analysis. The results show that the model is most sensitive to changes of
ManualWheel (�19) and least sensitive to FixationX (�3). These results make sense in the context of predicting takeover
time because changes in manual wheel indicate that the driver’s hands are on the wheel, and the way that the simulation
was designed did not necessarily require the human to move their fixation to the left or right. Analyzing a single feature
�� took a minimum of ~0.6 seconds, a maximum of ~4.5 minutes, with an average of ~36.4 seconds, which equates to an
average of ~15.7 minutes per input �.

2. Asymmetric Sensitivity Analysis
The asymmetric variant of our sensitivity analysis operates similarly to the symmetric variant, but adjusts the lower

and upper bounds of �� independently. We refer to the perturbation to the lower bound as �� and the perturbation to the
upper bound as ��. For each feature �� of input �, we use Marabou to evaluate separate queries for �� and �� over a
range of values until discovering the minimum �� and �� required to cause a change in the predicted label. The queries
on the lower bound perturb feature �� by �� − ��, and the queries on the upper bound perturb the feature �� by �� + ��.

For the lower bound of the asymmetric sensitivity analysis, Marabou provides the guarantee that any perturbation
smaller than �� subtracted from feature �� of an input �, the network will predict the same label. For the upper bound, it
is guaranteed that the network will predict the same label when any perturbation smaller than �� is added to feature �� .
The guarantee for the lower bound’s perturbation �� is described by equation 4, and the upper bound’s perturbation �� is
described by equation 5.

∀��′ s.t. ‖��′ − �� ‖ < ��, � ([�0...��′...��]) = � ([�0...�� ...��]) (4)

∀��′ s.t. ‖��′ − �� ‖ < ��, � ([�0...��′...��]) = � ([�0...�� ...��]) (5)

We used the asymmetric sensitivity analysis to evaluate ~2500k inputs from the dataset. Figure 6 shows the model’s
mean sensitivity by feature. Again, we can see that the model is sensitive to changes in the ManualWheel feature.
Another interesting observation is that on average, the model is significantly more sensitive to negative perturbations of
CurrentWheel, indicating that the model is more sensitive when the vehicle maneuvers to the left. This is likely due to
the fact that the simulation always had the obstacle on the right side of the road, so the vehicle always maneuvered to the
left during the takeover.

6

The asymmetric approach takes approximately twice as long as the symmetric approach to compute due to the fact
that the �� and �� must be discovered in isolation. However, even though it takes more time, it yields more information
with respect to how sensitive the model is to negative vs positive perturbations, and thus has the possibility of discovering
bias in the model.

0 0.012 0.024 0.036 0.048 0.06 0.072 0.084 0.096 0.108 0.12

± �
FixationDuration (�0)

FixationSeq (�1)
FixationStart (�2)

FixationX (�3)
FixationY (�4)

GazeDirectionLeftZ (�5)
GazeDirectionRightZ (�6)

PupilLeft (�7)
PupilRight (�8)

InterpolatedGazeX (�9)
InterpolatedGazeY (�10)

AutoThrottle (�11)
AutoWheel (�12)

CurrentThrottle (�13)
CurrentWheel (�14)

Distance3D (�15)
MPH (�16)

ManualBrake (�17)
ManualThrottle (�18)

ManualWheel (�19)
RangeW (�20)

RightLaneDist (�21)
RightLaneType (�22)

LeftLaneDist (�23)
LeftLaneType (�24)

Fig. 5 Symmetric sensitivity results

0 0.03 0.06 0.09 0.12

 �

-0.2 -0.15 -0.1 -0.05 0

��
FixationDuration (�0)

FixationSeq (�1)
FixationStart (�2)

FixationX (�3)
FixationY (�4)

GazeDirectionLeftZ (�5)
GazeDirectionRightZ (�6)

PupilLeft (�7)
PupilRight (�8)

InterpolatedGazeX (�9)
InterpolatedGazeY (�10)

AutoThrottle (�11)
AutoWheel (�12)

CurrentThrottle (�13)
CurrentWheel (�14)

Distance3D (�15)
MPH (�16)

ManualBrake (�17)
ManualThrottle (�18)

ManualWheel (�19)
RangeW (�20)

RightLaneDist (�21)
RightLaneType (�22)

LeftLaneDist (�23)
LeftLaneType (�24)

Fig. 6 Asymmetric sensitivity results

D. Clustering for Data-driven Verification
The data-driven verification technique tests the robustness of targeted regions from the input space that contain a

dense population of points of a single label. This approach, which is adopted from the Deep Safe[12] technique, allows
us to target the most relevant (densely populated) regions of the input space for verification. We start by running a
modified K-Means clustering algorithm on the dataset to produce regions which contain points of a single label. Each
region consists of a centroid, a radius, and a label. Then, we verify these regions with Marabou, using the centroids as
inputs. The result of this verification technique is a set of targeted, "safe regions" which have been proven to contain
points of a single label. Another benefit of this approach is that by targeting relevant regions of the input space, we
can verify larger regions using fewer inputs, thus covering more of the input space with fewer queries. Furthermore,
the results from this data-driven approach can also be useful to provide a measure of confidence about the network’s
predictions. The following sections describe the clustering algorithm, verification technique, results, and the proposed
run-time usage of the verification results.

1. Label-guided K-Means Clustering
To identify regions of points of a the same label, we use a modified K-Means clustering algorithm called label-guided

K-Means [12]. The regular K-Means algorithm is an unsupervised approach which does not provide any guarantees
that the clusters will contain points of the same label, which means that the clusters may not be useful for verification.
Label-guided K-Means clustering solves this problem by using the inputs’ labels to help guide the K-Means algorithm
to produce regions containing points of the same label. This is accomplished by applying K-Means with 	 set to the
number of unique labels, checking the number of labels in each cluster, and then repeating the process iteratively to
divide the K-Means clusters into regions which contain points of a single label. The output of the algorithm is a set of
regions, each one consisting of a centroid, a radius, and a label. The
2 (euclidean) distance metric is used to measure
distance between the points and compute the radius. Fig 7 shows Label-Guided K-means applied to a simplified example.
The first step in the figure shows the initial K-Means clustering, the second shows the final iteration of the algorithm, and
the third shows the resulting regions’ centroids and radii. We also compute the density of each region as � ÷ 	 where �
is the region’s radius, and 	 is the number of points in the region. Code listing 1 shows a python implementation of
label-guided K-Means.

When applied to the takeover time dataset, the algorithm produced a 6138 regions with 10 or more points, however
484 of those regions had centroids which were incorrectly predicted by the network, so they were discarded, leaving
us with a total of 5654 regions containing 10 or more inputs which were used for verification. These 5654 regions
effectively cover ~88% of the points from the dataset.

7

x0

x1

first	iteration x0

x1

last	iteration x0

x1

regions	(centroids	&	radii)

Fig. 7 Label-guided K-means

import numpy as np
from sklearn.cluster import KMeans
from scipy.spatial import distance

X:np.ndarray of inputs, Y:np.ndarray of labels
def label_guided_kmeans(X, Y):

regions = [] # list of completed regions
remaining = [(X, Y)] # stack of remaining inputs/labels
while len(remaining) > 0:

X, Y = remaining.pop(0) # pop inputs/labels to cluster from stack
Yuniq = np.unique(Y, axis=0) # unique labels in Y
n = Yuniq.shape[0] # number of unique labels in Y
initial centroids for KMeans (mean of inputs from each label)
init = np.array([X[np.where(Y==y)[0]].mean(axis=0) for y in Yuniq])
model = KMeans(n_clusters=n, init=init).fit(X) # run kmeans
Yhat = model.predict(X)
for c in np.unique(Yhat, axis=0):

idxs = np.where(Yhat == c)[0] # indexes of inputs in cluster
Xc, Yc = X[idxs], Y[idxs] # get inputs/labels in the cluster
if np.unique(Yc, axis=0).shape[0] == 1:

cluster contained a single label; save as a region
centroid = model.cluster_centers_[c]
radius = max([distance.euclidean(x, centroid) for x in X])
region = dict(centroid=centroid, radius=radius, label=Yc[0],

n=Xc.shape[0], density=radius/Xc.shape[0])
regions.append(region)

else:
cluster contained multiple labels; repeat KMeans on cluster
remaining.append((Xc, Yc))

return regions

Listing 1 Label-guided K-Means Python code

2. Region Verification
The regions discovered by the modified K-Means algorithm were verified using a technique similar to local robustness.

For each region, we performed a robustness test with Marabou, using the region’s centroids as the input. We set the
queries’ upper bounds to centroid+ �, and the lower bounds to centroid− �, and iterated over a range of values for � until
discovering the minimum ±� which caused a change in the predicted label for the region. Using the � we discovered for
a given region, we computed the verified radius of the region as ‖(centroid + �) − centroid‖�2. The guarantee provided
the verification of a given region with a radius � and label can be described by equation 6, which states that for all �

8

within the verified radius � of a safe region R, the predicted label will be label.

[ℎ]∀� �.�. ‖� − centroid‖�2 ≤ � ⇒ f(x) = label. (6)

The results from the data-driven verification results can be seen in Table 4. In the results, we compare the verified
radius with the original radius. We can see from the results that for the med-fast regions, the average verified radius
was larger than original radius. For all other labels, the average verified radius was roughly half of the original. These
results show that we were able to verify a larger portion of the med-fast regions than the regions from other labels. Even
though we were not able to verify the entire region for the other labels, the data-driven approach still allowed us to cover
a large portion of the dataset while testing only 5654 individual points. The data-driven verification tests per region took
a minimum of ~0.558 seconds and a maximum of ~149.55 minutes, with an average of ~3.38 minutes per region. In
general, the regions with higher densities took longer to verify than the regions with lower densities.

category verified radius original radius
mean min max mean min max

fast 0.81743 0.00250 8.88250 1.67943 0.11222 8.68825
med_fast 2.07260 0.01250 15.51750 1.98323 0.17113 10.43312

med 0.74406 0.00250 3.62750 1.46866 0.12483 6.87752
med_slow 0.58589 0.00250 6.04750 1.36602 0.04696 13.84459

slow 0.82720 0.00250 4.49500 1.34232 0.11944 5.79814
all 0.84691 0.00250 15.51750 1.50298 0.04696 13.84459

Table 4 Verified regions comparison

3. Run-time Usage
One of the goals of the Safe-SCAD project involves designing a safety-controller which was designed by the

University of York. Among other things, the proposed safety-controller has the job of ensuring that the takeover action
is handled safely. When the takeover alarm is triggered, the safety-controller will consume the neural network’s reaction
time prediction to help make a decision on the safest action to take. However, neural networks are probabilistic in
nature and may make incorrect predictions under certain conditions. So, to provide a measure of confidence about
the neural network’s prediction, we have devised a way to use the results from the data-driven verification within the
safety controller. To accomplish this, the verified "safe regions" (each consisting of a centroid, a radius, and a label)
are provided to the safety-controller in a searchable format, and then searched at runtime to discover whether or not
a given input resides within one of the regions and has a matching label. Code listing 2 shows a simplified python
implementation of a search function that the safety-controller could call to determine whether or not a given input resides
within one of the safe regions. If the input resides within a safe region with a matching label, the safety-controller would
have a strong degree of confidence that the prediction is correct. Otherwise, the safety-controller knows that it has a
lower degree of confidence about the prediction because it is either from part of the input space that was not formally
verified, or exists in a verified region but has a label mismatch.

from scipy.spatial import distance

regions:list of safe regions, x:the input, y:predicted label for x
def exists_in_safe_region(regions, x, y):

for r in regions:
label_match = r['label'] == y
in_region = distance.euclidean(r['centroid'], x) <= r['radius']
if label_match and in_region:

return True
return False

Listing 2 Searching safe regions

9

IV. Conclusion and Next Steps
We presented the formal verification of a neural network that predicts takeover-time in a shared-control semi-

autonomous driving system. We analyzed its sensitivity and robustness with several techniques using the Marabou
verification tool. The sensitivity analysis provides insight into the importance of input features, in addition to providing
formal guarantees with respect to the regions in the input space where the network behaves as expected. The asymmetric
sensitivity analysis has the added benefit of providing the opportunity to discover biases with respect to negative and
positive perturbations to individual features. We also evaluated the network’s robustness using local robustness, targeted
robustness, and a data-driven verification approach. Compared to targeted and local robustness, the data-driven approach
has the benefit of verifying the robustness of larger regions of the input space while testing fewer inputs. We have also
shown an example of how these results can be leveraged and included in a "safety controller" to provide confidence
about the network’s predictions.

For next steps, we plan to integrate the results of the neural network and verification results into the safety
controller, which will be then evaluated using the simulator. We also plan to try to improve the network’s robustness by
experimenting with different adversarial training techniques. One idea is to use the counterexamples discovered by
Marabou during re-training, and another is to use an adversarial training framework such as "Clever Hans". Another
idea for future work is to experiment with additional clustering algorithms to try to consolidate some of the regions. We
also plan to try to reduce the number of features in the model by using the results from our sensitivity analysis along
with other feature importance analysis techniques to discover features that may be able to be dropped from the model.

10

References
[1] KPMG International, “Autonomous Vehicles Readiness Index,” , 2018. URL https://home.kpmg.com/content/dam/
kpmg/xx/pdf/2018/01/avri.pdf.

[2] US Department of Transportation – Intelligent Transportation System Joint Program Office, “Automation Research at USDOT,”
, 2018. URL https://www.its.dot.gov/automated_vehicle/avr_plan.htm.

[3] Katz, G., and et al., “The Marabou Framework for Verification and Analysis of Deep Neural Networks,” CAV, 2019, pp.
443–452.

[4] Pakdamanian, E., Sheng, S., Baee, S., Heo, S., Kraus, S., and Feng, L., “DeepTake: Prediction of Driver Takeover Behavior
using Multimodal Data,” arXiv preprint arXiv:2012.15441, 2020.

[5] Roli, F., Biggio, B., and Fumera, G., “Pattern Recognition Systems under Attack,” CIARP (1), Lecture Notes in Computer
Science, Vol. 8258, Springer, 2013, pp. 1–8.

[6] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R., “Intriguing Properties of Neural
Networks,” , 2013. Technical Report. http://arxiv.org/abs/1312.6199.

[7] Papernot, N., McDaniel, P. D., Goodfellow, I. J., Jha, S., Celik, Z. B., and Swami, A., “Practical Black-Box Attacks against
Machine Learning,” AsiaCCS, ACM, 2017, pp. 506–519.

[8] Goodfellow, I. J., Shlens, J., and Szegedy, C., “Explaining and Harnessing Adversarial Examples,” , 2014. Technical Report.
http://arxiv.org/abs/1412.6572.

[9] Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B., “Detecting Adversarial Samples from Artifacts,” , 2017. Technical
Report. http://arxiv.org/abs/1703.00410.

[10] Carlini, N., and Wagner, D., “Towards evaluating the robustness of neural networks,” Proc. 38th IEEE Symposium on Security
and Privacy, 2017.

[11] Chang, K., Parvez, M. R., Chakraborty, S., and Ray, B., “Building Language Models for Text with Named Entities,” Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, 2018, pp. 2373–2383. URL https://aclanthology.info/papers/P18-1221/p18-1221.

[12] Gopinath, D., Katz, G., Pasareanu, C. S., and Barrett, C. W., “DeepSafe: A Data-Driven Approach for Assessing Robustness of
Neural Networks,” Automated Technology for Verification and Analysis - 16th International Symposium, ATVA 2018, Los Angeles,
CA, USA, October 7-10, 2018, Proceedings, Lecture Notes in Computer Science, Vol. 11138, edited by S. K. Lahiri and C. Wang,
Springer, 2018, pp. 3–19. https://doi.org/10.1007/978-3-030-01090-4_1, URL https://doi.org/10.1007/978-3-030-01090-4_1.

11

Appendix C Maintaining driver attentiveness in shared-control autonomous
driving

61

Maintaining driver attentiveness in shared-control
autonomous driving

Radu Calinescu, Naif Alasmari and Mario Gleirscher
Department of Computer Science, University of York, York, U.K.

{radu.calinescu,nnma500,mario.gleirscher}@york.ac.uk

Abstract—We present a work-in-progress approach to improv-
ing driver attentiveness in cars provided with automated driving
systems. The approach is based on a control loop that monitors
the driver’s biometrics (eye movement, heart rate, etc.) and the
state of the car; analyses the driver’s attentiveness level using a
deep neural network; plans driver alerts and changes in the speed
of the car using a formally verified controller; and executes this
plan using actuators ranging from acoustic and visual to haptic
devices. The paper presents (i) the self-adaptive system formed
by this monitor-analyse-plan-execute (MAPE) control loop, the
car and the monitored driver, and (ii) the use of probabilistic
model checking to synthesise the controller for the planning step
of the MAPE loop.

Index Terms—autonomous driving, shared control, MAPE
control loop, controller synthesis, probabilistic model checking

I. INTRODUCTION

The J3016 standard [1] classifies automated driving systems
(ADSs) on a six-level scale, from no automation at Level 0
to full automation at Level 5. Despite huge R&D budgets and
much hype over the past decade, fully autonomous (Level 5)
cars are unlikely to become available to the general public any
time soon. In contrast, cars providing Level 2 (i.e., partial)
automation can be purchased from manufacturers including
Tesla, Nissan and BMW; and the approval of Level 3 (i.e.,
conditional automation) and 4 (i.e., high automation) cars is
considered by regulators worldwide [2], [3], [4], [5], [6].

A critical requirement for vehicles operating at autonomy
Levels 2 and 3 is that a user resides in the driver’s seat and is
sufficiently attentive to be able to share the control of the car
with the ADS. At Level 2, this human in the loop is expected to
‘complete the object and event detection and response subtask
and [to] supervise the driving automation system’, while at
Level 3 the user is expected to be ‘receptive to ADS-issued
requests to intervene [. . .] and [to] respond appropriately’ [1].
Although Level 4 ADSs do not rely on human support, they
may still issue timely requests for human intervention (e.g.,
when they approach roads or traffic situations they were not
designed to handle), performing a minimum-risk manoeuvre
(e.g., stopping the car safely) if their user does not respond.

In all these scenarios, accidents with potentially fatal con-
sequences (for Levels 2 and 3) and frequent emergency stops
(for Level 4) can only be avoided if the drivers are sufficiently
attentive to be able to take over the control of their vehicles [7].
However, humans find it extremely difficult to remain attentive

This research was funded by the Lloyds Register Foundation under the
Assuring Autonomy International Programme grant Safe-SCAD.

when overseeing the operation of automated and autonomous
systems [8], [9], [10]. In the automotive domain, this is amply
demonstrated by accidents involving both cars with Level 2
ADS used by regular drivers [11], [12] and cars with higher
autonomy levels tested by professional safety drivers [13].

Our paper proposes an approach that mitigates this problem
by using a monitor-analyse-plan-execute (MAPE) control loop
to improve driver attentiveness in shared-control autonomous
driving. The monitoring component of this MAPE loop uses an
array of sensors to collect driver biometrics and vehicle data.
The analysis component uses these data and a deep neural
network [14] developed by a complementary research strand
of our Safe-SCAD project1 to predict the driver response time
and response quality to a potential ADS intervention request.
These predictions are processed based on a simple driver
attentiveness model that factors in the speed of the car, and the
resulting classification of the driver as attentive, semi-attentive
or inattentive guides the planning of driver alerts and car
speed changes by a formally verified discrete-event controller.
This controller achieves Pareto-optimal trade-offs between risk
level, driver nuisance, and progress with the journey.

The first version of our Safe-SCAD approach is aimed at
Level 3/4 ADSs, with a particular focus on the Automated
Lane Keeping System (ALKS) for which the United Na-
tions World Forum for Harmonization of Vehicle Regulations
adopted a new UN regulation [6] in June 2020, and that
the UK Department for Transport plans to implement on
UK motorways [2]. For these advanced ADSs, the Safe-
SCAD improvement in driver attentiveness can lead to fewer
minimum-risk manoeuvres and better progress with the car
journey, and with minimal risk of accidents. Future enhance-
ments (summarised later in the paper) will mitigate additional
uncertainties associated with the challenging problem tackled
by our approach, extending its applicability to Level 2 ADSs,
and to autonomous car testing by professional test drivers.

The key contributions of the paper are the presentation
of the driver attentiveness management problem in ALKS
(as a motivating example, in Sect. II), the Safe-SCAD ap-
proach to improving driver attentiveness in shared-control
autonomous driving (Sect. III), and the probabilistic model
checking method for synthesising the Safe-SCAD planning
component (Sect. IV). The paper also discusses related work
(Sect. V) and summarises our plans for future work (Sect. VI).

1Safety of Shared Control in Autonomous Driving, https://cutt.ly/Safe-SCAD

ar
X

iv
:2

10
2.

03
29

8v
1

 [
cs

.R
O

]
 5

 F
eb

 2
02

1

II. DRIVER ATTENTIVENESS MANAGEMENT PROBLEM

A. Background

We consider an ADS with the characteristics stipulated in
the United Nations’ ALKS regulation [6]. The ALKS can be
activated by a driver (who must be available in the driving seat,
with the seatbelt fastened) when all its components are fully
operational, and the vehicle is on roads and in environment
(e.g., weather) conditions within its operational design domain
(ODD). When activated, the system keeps the vehicle inside
its lane, controlling the vehicle speed (within the range 0 to
60 km/h) to adapt to the surrounding road traffic. Additionally,
the ALKS can detect the risk of collision (e.g., due to a
stationary vehicle) and can stop to avoid the collision, e.g.,
by performing an emergency manoeuvre.

In certain situations, all of which it must recognise, the
ALKS issues a transition demand, i.e., a request for the driver
to take over the control of the vehicle. The regulation allows
these situations to differ across manufacturers. However, they
must include the situations in which the ALKS activation
conditions are not met (e.g., the vehicle approaches a road
outside its ODD), and those in which the driver is unavailable
(i.e., not in the driving seat or inattentive) and not responding
to ALKS alerts aimed at restoring the driver’s availability.
Transition demands are issued timely, allowing (i) an attentive
driver to resume the manual driving safely, or (ii) the ALKS to
perform a minimum-risk manoeuvre (MRM), e.g., to bring the
vehicle to a standstill, if the driver is inattentive. The ALKS
may reduce the vehicle speed to ensure safety, e.g., by allowing
the driver additional time for the control takeover.

It follows from the summary so far that the ALKS must
be capable of assessing the driver’s availability, including
their position in the car (in the driving seat, wearing the
seatbelt) and their attentiveness. For the latter, the regulation
proposes the use of driver biometrics such as ‘eye blinking,
eye closure, conscious head or body movement’ [6], but
allows manufacturers to select their own methods for assessing
driver attentiveness. Likewise, the regulation and UK’s ALKS
plan [2] recommend the use of optical, acoustic and haptic
warning signals (i) to announce transition demands to the
driver, and (ii) to improve driver attentiveness, but are not
prescriptive about how these alerts should be used. In the next
section, we use these recommendations to define the driver
attentiveness management problem for ALKS-like ADsS.

B. Problem definition

Given an ALKS, we assume that its driver can have one
of n ≥ 2 attentiveness levels. The highest level (‘attentive’)
corresponds to the situation in which the driver can respond
timely to a transition demand, even at the maximum speed
permitted for the vehicle. The lowest level (‘inattentive’)
corresponds to the situation where the ALKS needs to execute
an MRM unless the driver improves their level of attentiveness
within a mandated time period τ > 0.2 If present, any inter-
mediate levels (e.g., ‘semi-attentive’ for n = 3) correspond to

2The UK consultation document proposes τ = 15s [2, p. 17].

diminished driver attentiveness that does not require an MRM.
However, they provide an opportunity for issuing alerts to
improve the driver’s attentiveness level before it drops further,
and drastic action is required: MRMs involve stopping the
vehicle in a motorway lane [2], [6], and should only be used
as a last resort.

We assume that the ADS has two mechanisms it can use
when the driver is not ‘attentive’. First, it can activate one or
several of m ≥ 1 alerts (e.g., optical, acoustic and haptic) as
needed to improve the driver’s attentiveness. Second, it can
reduce the car speed to one of q ≥ 1 speed levels, where we
allow q = 1 for the case when this feature is not available. As
such, the ALKS state at any point in time is characterised by:

1) the driver attentiveness level l ∈ {0, 1, . . . , n−1}, where
l = 0 and l = n − 1 correspond to the driver being
‘attentive’ and ‘inattentive’, respectively;

2) the set of active alerts a ∈ {0, 1}m, where a =
(a1, a2, . . . , am) indicates that the i-th alert is inactive
when ai = 0, and active when ai = 1;

3) the vehicle speed level v ∈ {0, 1, . . . , q − 1}.
Using the notation L = {0, 1, . . . , n − 1}, A = {0, 1}m
and V = {0, 1, . . . , q − 1} to denote the range for the three
components of the ALKS state, we further assume that the
following measures are defined over the state space L×A×V :

1) nuisance : A → R≥0, where nuisance(a) represents
the nuisance experienced by the driver when the alerts
a ∈ A are in use, with nuisance(0, 0, . . . , 0) = 0;

2) progress : V → R≥0, where progress(v) reflects the
progress with the journey made when the vehicle travels
at speed v ∈ V (e.g., the distance travelled in one hour);

3) risk : L × V → R≥0, where risk(l, v) provides a
measure of the risk associated with travelling at speed
v ∈ V when the driver attentiveness level is l ∈ L,

and that riskMRM > 0 denotes the risk associated with
performing an MRM.

Finally, we assume that timing data are available about the
drivers’ transition between the attentiveness levels L, when
different alert combinations are active, and at different vehicle
speeds. These data may be available from studies of driver
behaviour [15], [16], experiments carried out by ALKS man-
ufacturers, observations of drivers who are using the deployed
ADS, or a combination thereof. Given such data, the driver
attentiveness management problem is to find a combination of
alerts a(s) ∈ A to use in each ALKS state s ∈ L×A×V , such
that the ALKS achieves Pareto optimality between minimising
the driver nuisance, maximising the progress with the journey,
and minimising the risk over a period of T hours of driving.

III. THE SAFE-SCAD APPROACH

Our Safe-SCAD approach addresses the driver attentiveness
management problem from Section II-B by using a MAPE
control loop with the components shown in Figure 1. These
components and the four stages of the MAPE loop are
described in the following sections. We provide only a brief
summary for the components used in the first two MAPE

2

sensor data alerts/speed plan

Plan execution
module

Monitor

driver
attention
level

DNN-based
analysis module

Discrete-event
controller

driver
sensors

car
sensors

alert
effectors

speed
effectors

Fig. 1. Safe-SCAD driver attentiveness management approach for ALKS with
n = 3 attentiveness levels (attentive, semi-attentive, and inattentive)

stages (monitoring and analysis), as their technical details are
available in [14], [17], and we focus instead on their integration
into a MAPE loop and on the planning MAPE stage, which
represent the two key theoretical contributions of this paper.

A. Monitoring

In this MAPE stage, data are collected from a combina-
tion of driver-biometrics sensors and vehicle sensors. In our
project, driver biometrics are obtained [14] using: (i) eye-
tracking glasses to monitor eye movement data (e.g., gaze
position and fixation time); (ii) smartwatch photoplethysmo-
graphic sensors to monitor heart rate; and (iii) smartwatch
galvanic skin response sensors to monitor hand sweating. A
broad range of vehicle data streams are already collected and
used by ADSs, and can easily be exploited within our MAPE
loop. These range from vehicle velocity and steering wheel
angle to lane position and throttle/brake pedal angles.

B. Analysis

This MAPE stage (Figure 2) uses the DeepTake predictor
of driver takeover behaviour [14] developed by another Safe-
SCAD research strand. DeepTake is a deep neural network
(DNN) that uses the driver-biometrics and vehicle data from
the monitoring stage to predict the driver’s control takeover:

1) intention, i.e., whether the driver would react to an ADS
control-transition demand or not;

2) time elapsed from the transition demand until the driver
assumes manual control of the vehicle, as defined by the
ISO 21959 standard [18];

3) quality of the driver’s manoeuvring of the vehicle after
manual control is resumed.

DeepTake was shown [14] to predict these driver takeover
metrics with an accuracy of 96%, 93% and 83%, respectively.
We emphasise that these accuracy levels are sufficient for
the Safe-SCAD driver attentiveness management because our
solution is intended for use with ALKS that can ensure safety
at all times, e.g., by performing an MRM if necessary.

takeover intention
takeover time
takeover quality

sensor data

driver
attention
level

DeepTake DNN
verification
results

DeepTake deep
neural network

Attention level
calculator

DNN-based analysis module

Fig. 2. Safe-SCAD analysis MAPE stage

Additionally, our DNN-based analysis module operates con-
servatively by also exploiting the results from the design-
time robustness verification of DeepTake [17]. Figure 3 shows
how we intend to use these verification results in the post-
processing of the DeepTake predictions, such that the com-
puted driver attention level is lowered when the sensor data
belongs to regions of the DeepTake input space that were not
identified as robust by the DNN verification. This part of our
Safe-SCAD approach is under development.

C. Planning

In this MAPE stage, a discrete-event controller plans the
set of active alerts a ∈ A and the speed level v ∈ V that
the vehicle should employ. This controller is activated by the
occurrence of two types of events:

• changes in the attentiveness level of the driver;
• the expiry of a timer that is used to activate the controller

periodically at all times when the driver attentiveness
level is not ‘attentive’.

The timer enables the controller to periodically “try” new or
additional alerts and/or speed adjustments when the driver at-
tentiveness level was not improved by the execution of the plan
devised by the previous controller activation. The synthesis of
the Safe-SCAD controller is detailed in Section IV.

speed

takeover time
speed

takeover time

ta
ke
ov
er

qu
al
it
y

verified robustness of DNN-input region that sensor data belongs to

A

A

I

I

S

S

speed

takeover time

A

I
S

speed

takeover time

A

I

S

low high

lo
w

hi
gh

Fig. 3. The driver attention level (A=attentive, S=semi-attentive, I=inattentive)
depends on the predicted driver takeover time and quality, on the speed of the
vehicle, and on the verified robustness of the DeepTake input region that the
sensor data belongs to. The diagram applies to a positive takeover intention
(i.e., driver responsive to a control-transition demand); when DeepTake
predicts a negative intention, the driver state is deemed inattentive.

3

D. Execution

In this MAPE stage, the alert and speed effectors of the
vehicle are used to implement the alerts and speed plan
provided by the Safe-SCAD controller.

IV. SAFE-SCAD CONTROLLER SYNTHESIS

To synthesise the Safe-SCAD controller used in the plan-
ning MAPE stage, we model the relevant behaviour of the
self-adaptive system from Figure 1 as a parametric continuous-
time Markov chain (CTMC). The parameters of this CTMC
are chosen such that the (non-parametric) CTMC induced
by each combination of parameter values corresponds to a
different feasible controller, and the CTMCs obtained by
considering all valid combinations of parameter values define
the set of feasible Safe-SCAD controllers, i.e., the controller
design space. Given this design space, we synthesise formally
verified controllers by using (i) probabilistic model checking
to determine the nuisance, progress and risk associated with
any specific controller; and (ii) multi-objective genetic algo-
rithms to find controllers that achieve Pareto-optimal trade-
offs between these three measures. We detail the steps of our
controller synthesis process in Sections IV-B and IV-C, after a
brief introduction to continuous-time Markov chains and their
probabilistic model checking in Section IV-A.

A. Continuous-time Markov chains

A CTMC is a finite state-transition model M = (S, s0,R),
where S is a finite set of states, s0 ∈ S is the initial state,
and R : S × S → [0,∞) is a transition rate matrix such
that for any state si ∈ S, the probability that the CTMC will
transition from state si to another state within t > 0 time units
is 1−e

−t·
∑

sk∈S R(si,sk), and the probability that the new state
is sj ∈ S is given by R(si, sj)/

∑
sk∈S R(si, sk).

To enable the analysis of a broader range of CTMC proper-
ties, the states and transitions of a CTMC are often annotated
with rewards. A reward structure over a CTMC with state set
S is a pair of functions rX = (r1, r2), where r1 :S→R≥0 is
a state reward function that defines the rate r1(s) at which the
reward is obtained while the Markov chain is in state s; and

r2 :S×S →R≥0 is a transition reward function that defines
the reward obtained each time a transition occurs.

Probabilistic model checkers such as PRISM [19] and
Storm [20] use efficient symbolic model checking techniques
to analyse a wide range of CTMC properties expressed in con-
tinuous stochastic logic (CSL) augmented with rewards [21].
These properties include bounded and unbounded probabilistic
reachability, and several types of reward properties. For our
Safe-SCAD controller synthesis, we are interested in cumula-
tive reward properties. These properties are expressed using
the CSL formula RX

=?[C
≤T], which denotes the expected value

of the reward X accrued within the time interval [0, T].

B. Safe-SCAD controller design space
We model the driver attentiveness management problem

using a family of CTMCs to define the design space (i.e., the
possible variants) of the Safe-SCAD controller. Each CTMC
in the family has the state set S = L×A×V ×{c, c}, where L,
A and V are defined in Section II-B, and c is a Boolean state
variable that indicates whether the discrete-event controller
is active or not. As shown in Figure 4, which depicts the
controller design space for a specific instance of the problem,
the model has three types of state transitions:

1) Transitions corresponding to changes in driver attentiveness.
These transitions occur from states (l, a, v, c), in which the
controller is inactive, to states (l′, a, v, c) with a different
driver attentiveness level (i.e., l′ �= l), no changes in the
alerts a and speed v, and the controller activated.

2) Transitions corresponding to fixed controller actions. There
are two classes of such actions. In the first, the CTMC
transitions from states (′A′, a, v, c), in which the driver is
attentive and the controller activated, to the initial state
(′A′, (0, 0), 0, c); this happens whenever the controller is
activated by a change in driver attentiveness level, finds
the driver fully attentive, and therefore switches off any
activated alerts, and selects the nominal driving speed. In
the second, the controller is activated by a timer whenever
the driver has not become fully attentive after a period of
time since a previous controller action. In this situation, the

a v=000

a v=001 a v=111

A,c

S,c I,cA,c

S,c I,c

S,c I,cA,c

S,c I,c

S,c I,cA,c

S,c I,c
fixed controller transition

controller transition option

CTMC state corresponding
to driver attentiveness level
l = ′I′, alerts a = (0, 0),
speed level v = 1, and
controller activated

driver-attentiveness change
transition

I,c

a v=001

Fig. 4. Safe-SCAD controller design space for the driver attentiveness management problem with three driver attentiveness levels (L = {′A′, ′S′, ′I′}, where
A=attentive, S=semi-attentive and I=inattentive), two alerts (A = {0, 1}2) and two speed levels (V = {0, 1}). In the initial state (indicated by an incoming
arrow) the driver is attentive, the controller is inactive, the alerts a = (0, 0) are inactive, and the car drives at nominal speed level v = 0; for brevity, this
combination of alert activations and speed level is denoted a v = 000 in the diagram.

4

CTMC transitions from each state (l, a, v, c) with l �= ′A′

to the counterpart state (l, a, v, c) in which the activated
controller has the opportunity to switch on new alerts and/or
to select a new speed level.

3) Transitions corresponding to controller options. When the
controller is activated (by a change in driver attentiveness
level or by the timer) and finds the driver to not be fully
attentive, it has a choice of using any available combina-
tion of alerts and any speed level in order to make the
driver attentive and to reduce risk. Thus, from each state
(l, a, v, c) ∈ S with l �= ′A′, the CTMC can transition to any
state (l, a′, v′, c) ∈ S. These controller options are indicated
by dashed transitions in Figure 4. In the general case from
Section II-B, there are n driver attentiveness levels, m alerts
and q speed levels, giving the controller 2mq combinations
of alerts and speed level options to choose from in each
of the (n − 1)2mq CTMC states in which l �= ′A′. We
encode the controller option for each of the n − 1 driver
attentiveness levels l ∈ L \ {′A′} and each of the 2mq
combinations of alerts and speed level a v ∈ A× V using
a design-space parameter

option l,a v ∈ {0, 1, . . . , 2mq − 1}. (1)

We have (n − 1)2mq such parameters, and each assign-
ment of values to these parameters defines a candidate
deterministic controller3 solution for the driver attentiveness
management problem. There are (2mq)(n−1)2mq candidate
solutions in total, and thus (222)(3−1)222 = 816 ≈ 1014

candidate solutions for the problem instance encoded by
the parametric CTMC from Figure 4.

To complete the definition of the controller design space, we
also need to specify its CTMC transition rates. The last two
types of transitions described above correspond to controller
actions. Therefore, their rates must reflect the mean operation
time that the controller requires: (i) to plan the new alerts and
speed level when it is activated, and (ii) to be activated by
its timer. For instance, a controller operation time of 500ms
gives a rate of 2s−1. These rates are easy to determine, e.g., by
worst-case execution time analysis of the controller code. In
contrast, the rates for the first type of transition are much more
difficult to determine because they encode the mean time taken
by the driver to transition between attentiveness levels, for each
combination of active alerts and speed levels. These rates must
be estimated, e.g., by using data sources such as:

1) the numerous available studies and surveys of driver atten-
tiveness, e.g. [22], [15], [16], [23];

2) additional data from controlled experiments with drivers of
ALKS vehicles;

3) driver data collected during the actual driving of ALKS
vehicles, e.g., by using a black-box solution similar to that
already employed by many insurers of new drivers [24],
[25], either across a fleet of vehicles or for a specific driver.

3A deterministic controller is a controller which, for any state s ∈ S,
performs the same action each time when state s is reached.

We note that using the last data source enables both (i) the
definition of personalised controller design spaces for each
driver, and (ii) the continual updating of these design spaces
to support the runtime synthesis of new Safe-SCAD controllers
when the transition rates for a driver change significantly [26].

C. Synthesis of Pareto-optimal Safe-SCAD controllers

The synthesis of Safe-SCAD controllers solves the driver
attentiveness management problem. For this purpose, we
define the reward structures rnuisance , rprogress and rrisk

over the CTMCs from our controller design space. The
definitions of these reward structures are directly based on
the definitions of the three measures with the same names
from Section II-B. For instance, the state and transition
reward functions for the first reward structure are given by
rnuisance .r1(l, a, v, c?) = nuisance(a) for any CTMC state
(l, a, v, c?) ∈ S, and rnuisance .r2(s1, s2) = 0 for any CTMC
transition (s1, s2) ∈ S × S, respectively. Given these reward
structures, the driver attentiveness management problem for a
journey of duration T > 0 can be formalised as:

Find the set of controller options (1) whose associated
CTMCs from the controller design space achieve Pareto-
optimal trade-offs between minimising Rnuisance

=? [C≤T],
maximising Rprogress

=? [C≤T] and minimising Rrisk
=? [C≤T],

where the three CSL cumulative reward properties represent
the overall nuisance, overall progress with the journey, and
overall risk accrued over a journey of duration T , respectively.

We solve this problem using the search-based software
engineering tool EvoChecker [27], [28], which:

1) obtains the precise values of the three reward properties for
any given CTMC from the controller design space using a
probabilistic model checker (the tool can be configured to
use PRISM [19] or Storm [20]);

2) synthesises a close approximation of the Pareto-optimal set
of controller options (1) by using multi-objective genetic
algorithm (MOGA) optimisation (the tool can be configured
to work with any of the NGSA-II [29], SPEA2 [30] or
MOCell [31] MOGAs).

To this end, we supply EvoChecker with: (i) our controller
design space from Section IV-B, encoded in the high-level
PRISM modelling language [19] extended with EvoChecker
constructs that we use to specify the possible values for
the parameters (1); and (ii) the three CSL reward properties
specifying the optimisation objectives from our problem. Fig-
ure 5 shows how the controller design space from Figure 4
is expressed in this encoding. Due to space constraints, only
a fragment of the encoding is shown, but we made the entire
encoding (and the other artifacts from this section) available
for inspection at https://cutt.ly/SafeSCAD-SEAMS21. Given
the controller design space and the optimisation objectives,
EvoChecker synthesises a close approximation of the Pareto-
optimal set of Safe-SCAD controllers, and the Pareto front
associated with this set. Figure 6 shows the Pareto front ob-
tained for the instance of the driver attentiveness management

5

// Controller options specifying the next a v ∈ {000(2), 001(2), . . . , 111(2)} value
evolve int optionS,0 [0..7]; // when driver is semi-attentive and a v = 000(2)
. . .
evolve int optionS,7 [0..7]; // when driver is semi-attentive and a v = 111(2)
evolve int option I,0 [0..7]; // when driver is inattentive and a v = 000(2)
. . .
evolve int option I,7 [0..7]; // when driver is inattentive and a v = 111(2)

module Controller
c : [0..1] init 0; // 0 = controller inactive, 1 = controller active
a v : [0..7] init 0; // current alerts a and speed level v

// activate controller
[driver change] c=0 → (c′ = 1); // when driver state changes
[] c = 0 ∧ l �= 0 → timerRate : (c′ = 1); // periodically if driver not attentive

// switch off alerts and use nominal speed if the driver is attentive (l = 0)
[] c = 1 ∧ l = 0 → controllerRate : (a v′ = 0)&(c′ = 0);

// controller actions for driver attentiveness level l = 1 (semi-attentive)
[] c = 1 ∧ l = 1 ∧ a v = 0 → controllerRate : (a v′ = optionS,0)&(c′ = 0);
. . .
[] c = 1 ∧ l = 1 ∧ a v = 7 → controllerRate : (a v′ = optionS,7)&(c′ = 0);

// controller actions for driver attentiveness level l = 2 (inattentive)
[] c = 1 ∧ l = 2 ∧ a v = 0 → controllerRate : (a v′ = option I,0)&(c′ = 0);
. . .
[] c = 1 ∧ l = 2 ∧ a v = 7 → controllerRate : (a v′ = option I,7)&(c′ = 0);

endmodule

Fig. 5. Fragment of EvoChecker-encoded controller design space for m = 2
independent alerts and q = 2 speed levels

with the design space from Figure 4 and a driving time of
T = 4 hours. Each element of this Pareto front corresponds to
a controller variant whose nuisance, risk and progress values
from Figure 6 were obtained by EvoChecker through formal
verification using the Storm model checker.

V. RELATED WORK

Human-machine interaction in driving automation includes
the identification and handling of control transitions between
the driver and the vehicle [32], [18] and, in support of that,
managing the driver’s attentiveness and involvement necessary
for such transitions, taking into account the current traffic
situation with its potential adversity.

Recent research deals with managing such control transi-
tions [18], [33] or continuous shared control [32], and includes
inventions about control transitions that require but do not
manage driver attentiveness [33], [34], [35]. Similarly, an
earlier invention [36] focuses on classifying the driver state
and on technologies for situation-adapted collision avoidance
by combining braking and driver warnings. A range of experi-
ments [37], [38], [39] investigate parameters of the driver state
and behaviour (e.g. response times, drowsiness, influence of
traffic density and driver workload), however, with little data
about the time it takes drivers to become inattentive.

Overall, none of the works we found discusses how atten-
tiveness monitoring and control software can be automatically
designed and adapted for optimal safety and performance,
and how such software can be confidently assured to fulfil
regulatory requirements [40]. In contrast, our Safe-SCAD ap-
proach focuses on the design and analysis of a MAPE control
loop supported by such software, assuming the availability of
specific sensor technology for estimating the driver state [37].
Moreover, we provide a generic method for defining the design
space for this control software, and for its automated synthesis
with probabilistic guarantees. Finally, our exhaustive formal

Fig. 6. Pareto front associated with the set of Pareto-optimal Safe-SCAD con-
trollers for the controller design space instance from Figure 4, as synthesised
in 98.58s by EvoChecker configured to use Storm [20] and NSGA-II [29]
(population size 7000 × 1000 iterations) and running on a 3.6GHz Intel Core
i3 Mac OSX 10.14.6 Mac mini computer with 16 GB of memory

verification approach based on probabilistic model checking is
also an improvement over the purely testing-based approach
that the safety of the intended functionality (SOTIF) standard
recommends for the verification of automated driving systems
[40, §10.3, Table 5-7].

VI. CONCLUSION

We introduced a MAPE control loop for improving driver
attentiveness in ADS-enhanced cars, and we described a novel
method for the rigorous synthesis of the controller used in
the planning stage of this MAPE loop. In the next stage
of our project, we will complete the development of the
DNN-based analysis module from Figure 2 by integrating our
project’s DeepTake predictor of driver takeover behaviour [14]
and its verification results [17] into the end-to-end solution
presented in this paper. The complete solution will then be
evaluated experimentally, in a study carried out using our
driving simulator from [14].

Additionally, we will assess whether the good EvoChecker
scalability reported in [28] extends to our controller synthesis
problem with larger numbers of alerts m and speed levels
q (cf. Section II-B). Finally, we plan to explore: (i) the
use of personalised and adaptive controllers (as described in
Section IV-B); (ii) the use of the CTMC-refinement technique
from [41], [42] to improve the accuracy of the Safe-SCAD
controller design space; (iii) the use of the robust synthesis
techniques from [43], [44] to generate controllers tolerant to
variations in driver behaviour; and (iv) the potential advantages
of using probabilistic Safe-SCAD controllers, i.e., controllers
for which the options (1) are discrete probability distributions
over the set of actions available to the controller.

ACKNOWLEDGEMENTS

This project has received funding from the Assuring Auton-
omy International Programme project ‘Safety of shared control
in autonomous driving’ and the UKRI project EP/V026747/1
‘Trustworthy Autonomous Systems Node in Resilience’.

6

REFERENCES

[1] On-Road Automated Driving (ORAD) committee, “Taxonomy and
definitions for terms related to driving automation systems for
on-road motor vehicles,” SAE International, Standard J3016 201806,
2018. [Online]. Available: https://www.sae.org/standards/content/j3016
201806/preview/

[2] Centre for Connected and Autonomous Vehicles, “Safe use of automated
lane keeping system (ALKS),” UK Department for Transport, Tech.
Rep., August 2020. [Online]. Available: https://cutt.ly/UK-DfT-ALKS

[3] California State Assembly, “Assembly Bill 2866 Autonomous vehicles,”
February 2016. [Online]. Available: http://leginfo.legislature.ca.gov/
faces/billTextClient.xhtml?bill id=201520160AB2866

[4] European Parliament, “Regulation (EU) 2019/2144 of the European
Parliament and of the Council on type-approval requirements for motor
vehicles,” Official Journal of the European Union, vol. L 325/1, 2019.

[5] T. Imai, “Legal regulation of autonomous driving technology: Current
conditions and issues in Japan,” IATSS Research, vol. 43, no. 4, pp.
263–267, 2019.

[6] UNECE World Forum for Harmonization of Vehicle Regulations,
“ECE/TRANS/WP.29/2020/81: United Nations Regulation on Uniform
provisions concerning the approval of vehicles with regard to
Automated Lane Keeping Systems,” June 2020. [Online]. Available:
https://cutt.ly/ALKS-regulation

[7] N. Merat and A. H. Jamson, “How do drivers behave in a highly
automated car?” in 5th International Driving Symposium on Human
Factors in Driver Assessment, Training, and Vehicle Design: Driving
Assessment 2009. University of Iowa, 2009.

[8] R. Chai, G. R. Naik, T. N. Nguyen et al., “Driver fatigue classification
with independent component by entropy rate bound minimization anal-
ysis in an eeg-based system,” IEEE Journal of Biomedical and Health
Informatics, vol. 21, no. 3, pp. 715–724, 2016.

[9] J. F. Duffy, K.-M. Zitting, and C. A. Czeisler, “The case for addressing
operator fatigue,” Reviews of Human Factors and Ergonomics, vol. 10,
no. 1, pp. 29–78, 2015.

[10] G. Matthews and P. A. Hancock, The Handbook of Operator Fatigue.
CRC Press, 2017.

[11] V. A. Banks, K. L. Plant, and N. A. Stanton, “Driver error or designer
error: Using the perceptual cycle model to explore the circumstances
surrounding the fatal Tesla crash on 7th May 2016,” Safety Science,
vol. 108, pp. 278–285, 2018.

[12] US National Transportation Safety Board, “Collision between a sport
utility vehicle operating with partial driving automation and a crash
attenuator,” February 2020. [Online]. Available: https://www.ntsb.gov/
news/events/Documents/2020-HWY18FH011-BMG-abstract.pdf

[13] F. M. Favarò, N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju, “Ex-
amining accident reports involving autonomous vehicles in California,”
PLoS one, vol. 12, no. 9, p. e0184952, 2017.

[14] E. Pakdamanian, S. Sheng, S. Baee, S. Heo, S. Kraus, and L. Feng,
“DeepTake: Prediction of driver takeover behavior using multimodal
data,” in ACM CHI Conference on Human Factors in Computing
Systems, 2021. [Online]. Available: https://arxiv.org/abs/2012.15441

[15] A. Lotz and S. Weissenberger, “Predicting take-over times of truck
drivers in conditional autonomous driving,” in International Conference
on Applied Human Factors and Ergonomics, 2018, pp. 329–338.

[16] Q. Maia, M. A. Grandner et al., “Short and long sleep duration and
risk of drowsy driving and the role of subjective sleep insufficiency,”
Accident Analysis & Prevention, vol. 59, pp. 618–622, 2013.

[17] J. M. Grese, C. Pasareanu, and E. Pakdamanian, “Formal analysis
of a neural network predictor in shared-control autonomous driving,”
in AIAA Scitech 2021 Forum, 2021. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.2021-1580

[18] ISO/TR 21959, “Road vehicles – human performance and state in
the context of automated driving,” ISO, Standard, 2020. [Online].
Available: https://www.iso.org/standard/78088.html

[19] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV’11, 2011, pp. 585–591.

[20] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A Storm is coming:
A modern probabilistic model checker,” in CAV’17, 2017, pp. 592–600.

[21] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model check-
ing,” in Formal Methods for the Design of Computer, Communication
and Software Systems: Performance Evaluation. Springer, 2007, pp.
220–270.

[22] M. Körber, L. Prasch, and K. Bengler, “Why do I have to drive now?
Post hoc explanations of takeover requests,” Human Factors, vol. 60,
no. 3, pp. 305–323, 2018.

[23] W. Vanlaar, H. Simpson, D. Mayhew, and R. Robertson, “Fatigued and
drowsy driving: A survey of attitudes, opinions and behaviors,” Journal
of safety research, vol. 39, no. 3, pp. 303–309, 2008.

[24] A. Kassem, R. Jabr, G. Salamouni, and Z. K. Maalouf, “Vehicle black
box system,” in 2nd IEEE Systems Conference, 2008, pp. 1–6.

[25] M. A. Kumar, M. V. Suman, Y. Misra, and M. G. Pratyusha, “Intelligent
vehicle black box using IoT,” Int. J. Eng. Technol, vol. 7, no. 2, pp. 215–
218, 2018.

[26] X. Zhao, R. Calinescu, S. Gerasimou, V. Robu, and D. Flynn, “Inter-
val change-point detection for runtime probabilistic model checking,”
in 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 163–174.

[27] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthe-
sis of probabilistic models for quality-of-service software engineering
(t),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 319–330.

[28] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated
Software Engineering, vol. 25, no. 4, pp. 785–831, 2018.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[30] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[31] A. J. Nebro, J. J. Durillo, F. Luna et al., “MOCell: A cellular genetic
algorithm for multiobjective optimization,” International Journal of
Intelligent Systems, vol. 24, no. 7, pp. 726–746, 2009.

[32] M. Walch, K. Mühl, J. Kraus, T. Stoll, M. Baumann, and M. Weber,
“From car-driver-handovers to cooperative interfaces: Visions for driver-
vehicle interaction in automated driving,” in Automotive User Interfaces.
Springer, 2017, pp. 273–294.

[33] R. Latotzki and F. Goseberg, “Handover procedure for driver of con-
trolled vehicle,” Germany Patent US 2020/0 103 898 A1, 2020. [Online].
Available: https://patents.google.com/patent/US20200103898A1/en

[34] P. L. G. Martinez and J. Yu, “Collision mitigation systems and methods
using driver attentiveness,” Worldwide Patent US9 047 780B2, 2013.
[Online]. Available: https://patents.google.com/patent/US9047780B2/en

[35] B. Hoye, “Determining driver engagement with autonomous vehicle,”
U.S. Patent US10 209 708B2, 2016. [Online]. Available: https://patents.
google.com/patent/US10209708B2/en

[36] M. Kopf and N. Farid, “Systems and methods for evaluating driver atten-
tiveness for collision avoidance,” Germany Patent US7 592 920B2, 2004.
[Online]. Available: https://patents.google.com/patent/US7592920B2/en

[37] C. Gold, D. Damböck, K. Bengler, and L. Lorenz, “Partially automated
driving as a fall-back level of high automation,” in 6. Tagung
Fahrerassistenzsysteme: Der Weg zum automatischen Fahren, vol. 28,
2013. [Online]. Available: https://mediatum.ub.tum.de/doc/1187198/

[38] F. Biondi, D. L. Strayer, R. Rossi et al., “Advanced driver assistance
systems: Using multimodal redundant warnings to enhance road safety,”
Applied Ergonomics, vol. 58, pp. 238–244, 2017.

[39] T. E. Trimble, R. Bishop et al., “Human factors evaluation of
level 2 and level 3 automated driving concepts: Past research,
state of automation technology, and emerging system concepts,”
National Highway Traffic Safety Administration, Tech. Rep., 2015.
[Online]. Available: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/
812043 hf-evaluationlevel2andlevel3automateddrivingconceptsv2.pdf

[40] ISO/PAS 21448, “Road vehicles – safety of the intended functionality
(SOTIF),” International Standards Organisation, Standard, 2019.
[Online]. Available: https://www.iso.org/standard/70939.html

[41] C. Paterson and R. Calinescu, “Accurate analysis of quality properties
of software with observation-based markov chain refinement,” in IEEE
International Conference on Software Architecture, 2017, pp. 121–130.

[42] ——, “Observation-enhanced QoS analysis of component-based sys-
tems,” IEEE Trans. Softw. Eng., vol. 46, no. 5, pp. 526–548, 2018.

[43] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Efficient synthesis of robust models for stochastic systems,”
Journal of Systems and Software, vol. 143, pp. 140–158, 2018.

[44] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Designing robust software systems through parametric Markov
chain synthesis,” in IEEE International Conference on Software Archi-
tecture, 2017, pp. 131–140.

7

Appendix D Discrete-Event Controller Synthesis for Autonomous Sys-
tems with Deep-Learning Perception Components

69

Discrete-Event Controller Synthesis for Autonomous Systems
with Deep-Learning Perception Components

Radu Calinescu*, Calum Imrie*, Ravi Mangal†, Corina Păsăreanu†,
Misael Alpizar Santana*, and Gricel Vázquez*

We present DEEPDECS, a new method for the synthesis of correct-by-construction discrete-event controllers for
autonomous systems that use deep neural network (DNN) classifiers for the perception step of their decision-making
processes. Despite major advances in deep learning in recent years, providing safety guarantees for these systems
remains very challenging. Our controller synthesis method addresses this challenge by integrating DNN verification
with the synthesis of verified Markov models. The synthesised models correspond to discrete-event controllers
guaranteed to satisfy the safety, dependability and performance requirements of the autonomous system, and to be
Pareto optimal with respect to a set of optimisation criteria. We use the method in simulation to synthesise controllers
for mobile-robot collision avoidance, and for maintaining driver attentiveness in shared-control autonomous driving.

Autonomous systems perceive the environment they
operate in, and adapt their behaviour in response to changes
in it. In application domains as diverse as medicine,1,2

finance3 and transportation,4,5 this perception is often
performed using deep neural network (DNN) classifiers. The
integration of deep-learning perception components into the
control loop of autonomous systems used in such critical
applications poses major challenges for their assurance.6 In
particular, the long-established methods for formal software
verification7 cannot be used to provide safety and performance
guarantees for systems comprising both traditional software
and deep-learning components. Newer verification methods
developed specifically for DNNs focus on verifying robustness
to changes in individual8,9 or clusters10 of DNN inputs.
Therefore, they are equally unable to provide system-level
guarantees for the controllers of autonomous systems with
DNNs perception components.

Our paper presents DEEPDECS,a a controller synthesis
method that addresses this significant limitation. DEEPDECS
employs a suite of DNN verification methods to quantify
the aleatory uncertainty that the use of DNN perception
components introduces in the control loop of the autonomous
system under development. Discrete-event controllers
guaranteed to satisfy the requirements of the autonomous
system are then synthesised from a stochastic model that
takes this uncertainty into account and leverages the high
accuracy that DNNs can achieve for their verified inputs.

We start by introducing our DEEPDECS controller synthesis
method, and its unique approach to exploiting both DNN and
traditional-software verification techniques. Next, we describe
the use of DEEPDECS to devise controllers for mobile-robot
collision avoidance, and for using a combination of optical,
audio and haptic alerts to improve driver attentiveness in
vehicles provided with Level 3 automated driving systems.11

Finally, we discuss DEEPDECS in the context of related work,
and we propose directions for future research.

*Department of Computer Science, University of York, York, UK.
†Carnegie Mellon University, Silicon Valley, USA
aDeep neural network perception Discrete-Event Controller Synthesis

1 DEEPDECS controller synthesis

Overview. DEEPDECS uses a parametric discrete-time
Markov chain (pDTMC) to model the design space of the
controller under development. The uncertainty due to the use
of a deep-learning perception component within the system to
be controlled and, if applicable, the uncertainty inherent to the
system and its environment are modelled by the probabilities
of transition between the states of this pDTMC. Finally, the
controller synthesis problem involves finding combinations of
parameter values for which the Markov chain satisfies strict
safety, dependability and performance constraints, and is
Pareto-optimal with respect to a set of optimisation objectives.
These constraints and optimisation objectives are formalised
as probabilistic temporal logic formulae.

DEEPDECS derives the pDTMC underpinning its controller
synthesis automatically from (i) DNN verification results
that quantify the uncertainty due to the deep-learning
perception component, and (i) an “ideal” pDTMC that models
the behaviour of the controlled system assuming perfect
perception (Figure 1a). The set of correct-by-construction,
Pareto-optimal DEEPDECS controllers is then synthesised
by applying a combination of probabilistic model checking
and search techniques to the derived pDTMC. As shown
in Figure 1b, each of these controllers operates by reacting
to changes in the system, in the DNN outputs and, unique
to DEEPDECS, in the results obtained through the online
verification of each DNN input and prediction.

We detail each stage of the DEEPDECS approach below.

Stage 1: DNN uncertainty quantification. This section
provides a brief introduction to DNN classifier verification, and
describes the use of such verification techniques to quantify
the aleatory uncertainty of DNN classifiers.

a) Verification of DNN classifiers. A K-class DNN clas-
sifier fθ is a function, composed of linear and non-linear
transformations, of the form

fθ :Rd→ [K], (1)

where [K] denotes the set {1, ... ,K}, and θ refers to the

1

ar
X

iv
:2

20
2.

03
36

0v
1

 [
cs

.L
G

]
 7

 F
eb

 2
02

2

Test dataset

Verification
results

verification methods

Key

1. DNN
uncertainty

quantification

Perfect-
perception

pDTMC model

PCTL-encoded
requirements

DNN perception
component

{
2. Model

augmentation
DNN-perception
pDTMC model

3. Controller
synthesis

Pareto-optimal
controllers

DeepDECS stage

Model/software artefact

Data

verif 1 verif n

(a) DEEPDECS generates discrete-event controllers aware of the uncertainty induced by the DNN perception component of an autonomous
system in three stages. First, in a DNN uncertainty quantification stage, n verification methods are used to evaluate the DNN perception
component over a test dataset representative for the operational design domain (ODD) of the autonomous system. The verification
results provide a quantification of the DNN prediction uncertainty within the system ODD. Next, the Model augmentation stage uses
these results—and an ideal-system pDTMC model that assumes perfect perception—to assemble a pDTMC system model that takes the
DNN-induced uncertainty into account. Finally, the Controller synthesis stage uses this pDTMC model to synthesise a set of Pareto-optimal
discrete-event controllers guaranteed to satisfy the PCTL-encoded requirements (constraints and optimisation objectives) of the system.

Autonomous system

Online DNN
verification

DNN perception
component

DeepDECS
Pareto-optimal

controller

(1) (2)

(6) (7)

(4)

(5)

verif 1 verif n

Managed cyber-physical
components

sensors effectors

(3)

Environment

(b) The cyber-physical components of an autonomous system managed by a DEEPDECS controller monitor their environment through
sensors (1) and perform actions that affect it through effectors (2). A DNN perception component uses a combination (3) of preprocessed
sensor data and data about these managed components to classify the state of the environment (4). The n verification methods used for
the DEEPDECS controller synthesis are also applied to the classification (4) and the DNN input (3) that produced it. Using the online DNN
verification results (5) alongside the classification (4) and additional state information (6) obtained directly from the managed cyber-physical
components, the DEEPDECS controller updates (7) the controllable parameters of these components in line with the system requirements.

Figure 1: DEEPDECS controller synthesis (a), and deployment (b)

weights or parameter values that characterize the linear
transformations. As the results presented in this article are
oblivious to the internal details of DNNs, we will by default
omit the subscript θ, and treat f as a black-box function.

DNN classifiers are learnt from data, and are not guaran-
teed to always classify their input correctly. DNN verification
techniques can help assess the quality of a classifier for a

given input. A verification technique has the general form

verif :(Rd→ [K])×Rd→B, (2)

such that, for a classifier f ∈Rd → [K] and an input x∈Rd,
verif (f,x)=true if the verification technique deems the DNN f
likely to classify the input x correctly, and verif (f,x)=false oth-
erwise. Two examples of simple DNN verification techniques

2

(which we use to evaluate DEEPDECS later in the article) are:

1. Model confidence threshold—A K-class DNN classifier is
practically implemented as a function of type Rd→ [0,1]K,
with each input x ∈ Rd first mapped to a discrete
probability distribution δ(x) = (p1,p2,...,pK) over the K
classes, and the class corresponding to the highest
probability is chosen as the classifier prediction. The
probability associated with a class can be interpreted
as estimating the probability that the class is the true
label of x. While it has been observed that classifiers
may not be well-calibrated, i.e., the estimated correctness
probabilities may be far from the true probabilities, a
number of methods have been proposed to calibrate DNN
classifiers.12 Assuming that a classifier is well-calibrated
using one of these methods, a simple DNN verification
technique is to check whether the estimate correctness
probability for an input x is greater than a fixed threshold
τ for the class with the highest probability:

verif 1(f,x)=

{
true, if maxKi=1pi≥τ
false, otherwise (3)

2. Local robustness certification13—A DNN classifier f
is ε-locally robust at an input x if perturbations within
a small distance ε > 0 from x (measured using the �2
metric) do not lead to a change in the classifier prediction.
Accordingly, the local robustness verifier is defined by

verif 2(f,x)=




true, if ∀x′∈Rd. ||x−x′||2≤ε

=⇒ f(x)=f(x′)
false, otherwise

(4)
for any input x∈Rd.

b) Quantification of DNN perception uncertainty. The use
of DNN perception introduces aleatory uncertainty into the
autonomous system since DNNs are not guaranteed to predict
accurately on all inputs. In the first DEEPDECS stage, we
use a mechanism that relies on DNN verification techniques
to empirically quantify the uncertainty of the DNN outcomes.

Let X ⊂Rd be a representative test dataset for the DNN
classifier (1), i.e., a set of classifier inputs that reflects the inputs
that the autonomous system using the DNN will encounter in its
ODD. For any test input x∈X, let f∗(x)∈ [K] be the label (i.e.,
the true class) of x, which is known since X is a test dataset.

DEEPDECS uses n≥0 DNN verification techniques verif 1,
verif 2, . . . , verif n to identify subsets of X for which the
classifier is likely to achieve higher accuracy than for the entire
set X.b We use the n verification methods to partition the test
dataset X into 2n subsets comprising inputs x with the same
verification results.c Formally, for a DNN classifier f and any
v=(v1,v2,...,vn)∈Bn, we define the test data subset

Xv={x∈X |verif (f,x)=v}, (5)

bNote that DEEPDECS is also applicable in the special case when n=0,
i.e., when no verification techniques is used.

cAs typical values for n are n=1,2,3, there will only be a small number
of such subsets.

where verif (f,x) = (verif 1(f,x),verif 2(f,x), ... ,verif n(f,x)).
We use each of these test data subsets to define a K×K
confusion matrix Cv such that, for any k,k′∈ [K], the element
in row k and column k′ of this matrix is given by the number
of inputs from Xv with true class k that the DNN classifies as
belonging to class k′

Cv[k,k′]=#{x∈Xv |f∗(x)=k∧f(x)=k′}, (6)

where, for any set A, #A denotes its cardinality.
As the test dataset X is representative of the DNN inputs

that the system encounters in operation, we henceforth
assume that the probability that a class-k input x satisfies
verif (f,x)=v and is (mis)classified by the DNN as belonging
to class k′ is given by:d

pkk′v=Pr(f(x)=k′∧verif (f,x)=v|f∗(x)=k)

=
Cv[k,k

′]∑
v′∈Bn

∑
k′′∈[K]Cv′[k,k′′]

. (7)

Stage 2: Model augmentation. This section provides a brief
introduction to pDTMCs, defines the discrete-event controller
synthesis problem, and presents the DEEPDECS theory un-
derlying the generation of pDTMCs that model the behaviour
of, and support the synthesis of controllers for, autonomous
systems with deep-learning perception components.

a) Discrete-time Markov chains. DEEPDECS models the
design space (i.e., the possible variants) for the controller of an
autonomous system as a pDTMC augmented with rewards.

Definition 1. A reward-augmented discrete-time Markov
chain (DTMC) over a set of atomic propositions AP is a tuple

M=(S,s0,P,L,R), (8)

where S �=∅ is a finite set of states; s0∈S is the initial state;
P :S×S→ [0,1] is a transition probability function such that,
for any states s,s′∈S, P(s,s′) gives the probability of transition
from state s to state s′ and

∑
s′∈SP(s,s

′)=1; L :S→2AP is
a labelling function that maps every state s∈S to the atomic
propositions from AP that hold in that state; and R is a set
of reward structures, i.e., function pairs (ρ,ι) that associate
non-negative values with the pDTMC states and transitions:

ρ :S→R≥0, ι :S×S→R≥0. (9)

When (8) includes unknown transition probabilities and/or
reward values, the DTMC is termed parametric.

Definition 2. A reward-augmented parametric discrete-time
Markov chain is a DTMC (8) comprising one or several
transition probabilities and/or rewards that are specified as
rational functionse over a set of continuous variables.14

DEEPDECS uses probabilistic computation tree logic
(PCTL)15,16 extended with rewards17 to quantify the safety, de-
pendability and performance properties of an autonomous sys-
tem whose controller design space is modelled as a pDTMC.

dFormally, this results holds as #X→∞.
ei.e., functions that can be written as fractions whose numerators and

denominators are polynomial functions, e.g., 1−p or 1−p1
p2

3

Definition 3. State PCTL formulaeΦ and path PCTL formulae
Ψ over an atomic proposition set AP, and PCTL reward formu-
lae ΦR over a reward structure (9) are defined by the grammar:

Φ::=true |α |Φ∧Φ |¬Φ |P∼p[Ψ]
Ψ::=XΦ |ΦUΦ |ΦU≤kΦ
ΦR ::=R∼r[C

≤k] |R∼r[FΦ]
(10)

where α∈AP is an atomic proposition, ∼∈{≥,>,<,≤} is a
relational operator, p∈ [0,1] is a probability bound, r∈R+

0 is
a reward bound, and k∈N>0 is a timestep bound.

The PCTL semantics15–17 is defined using a satisfaction
relation |= over the states of a DTMC. Given a state s of a
DTMC M, s |=Φ means ‘Φ holds in state s’, and we have:
always s |= true; s |=α iff α∈L(s); s |=¬Φ iff ¬(s |=Φ); and
s |=Φ1∧Φ2 iff s |=Φ1 and s |=Φ2. The time-bounded until
formula Φ1U

≤kΦ2 holds for a path (i.e., sequence of DTMC
states s0s1s2 ... such that P(si,si+1) > 0 for all i > 0) iff Φ1

holds in the first i<k path states and Φ2 holds in the (i+1)-th
path state; and the unbounded until formula Φ1UΦ2 removes
the bound k from the time-bounded until formula. The next
formula XΦ holds if Φ is satisfied in the next state. The
semantics of the probability P and reward R operators are
defined as follows: P∼p[Ψ] specifies that the probability that
paths starting at a chosen state s satisfy a path property
Ψ is ∼p; R∼r[C

≤k] holds if the expected cumulated reward
up to time-step k is ∼ r; and R∼r[FΦ] holds if the expected
reward cumulated before reaching a state satisfying Φ is ∼r.
Replacing ∼p (or ∼r) from (10) with ‘=?’ specifies that the
calculation of the probability (or reward) is required. We use
the shorthand notation pmc(Φ,M) and pmc(ΦR,M) for these
quantities computed for the initial state s0 of M.

b) Discrete-event controller synthesis problem. To distin-
guish between different concerns of the autonomous system
to be controlled, DEEPDECS organises each state s of the
perfect-perception pDTMC model from Figure 1 into a tuple

s=(z,k,t,c), (11)

where z∈Z models the (internal) state of the system, k∈ [K]
models the state of the environment, c∈C models the control
parameters of the system, and t∈ [3] is a “turn” flag. This flag
indicates which elements of (11) can change in each pDTMC
state:

∀s=(z,k,t,c),s′=(z′,k′,t′,c′)∈S :
((t=1∧P(s,s′)>0) =⇒ k′=k∧ c′=c∧ t′<3)∧
((t=2∧P(s,s′)>0) =⇒ z′=z∧ c′=c∧ t′=3)∧
((t=3∧P(s,s′)>0) =⇒ z′=z∧k′=k∧ t′=1).

(12)

We partition the pDTMC state set into states in which the
system can change, states in which the environment can
change, and states in which it is the controller’s “turn” to act
for simplicity, and without loss of generality; the three types
of states can be easily collapsed into one.

Finally, we assume that the outgoing transition probabilities
from states (z,k,3,c)∈S are controller parameters that need
to be determined and are given by

xzkcc′ =P((z,k,3,c),(z,k,1,c′)) (13)

for all c′∈C, where xzkcc′ ∈{0,1} for deterministic controllers or
xzkcc′ ∈ [0,1] for probabilistic controllers, and

∑
c′∈Cxzkcc′ =1.

Figure 2a shows the general format of a DEEPDECS
perfect-perception pDTMC model, defined in the high-level
modelling language of the PRISM model checker.18 In this
language, the model of a system is specified by the parallel
composition of a set of modules. The state of a module is
given by a set of finite-range local variables, and its state
transitions are specified by probabilistic guarded commands
that change these variables:

[action] guard →e1 :update1+e2 :update2+...+em :updateN ;
(14)

In this command, guard is a boolean expression over the
variables of all modules. If guard evaluates to true, the
arithmetic expression ei, i ∈ [m], gives the probability with
which the updatei change of the module variables occurs.
When action is present, all modules comprising commands
with this action have to synchronise, i.e., to perform one of
these commands simultaneously.

With this notation introduced so far, the controller synthesis
problem for the perfect-perception system is to find the set of
Pareto-optimal parameters (13) which ensure that the pDTMC
satisfies n1≥0 PCTL-encoded constraints of the form in (10),

Ci ::=Φi |ΦRi (15)

and Pareto-optimises n2≥1 PCTL-encoded objectives of the
form

Oj ::=maximise pmc(Φj,M) |minimise pmc(Φj,M)

maximise pmc(ΦRj),M|minimise pmc(ΦRj,M) (16)

where i∈ [n1] and j∈ [n2].

c) Model augmentation. The controller of an autonomous
system with deep-learning perception does not have access
to the true value k of the environment state from (11). Instead,
DEEPDECS controllers need to operate with an estimate k̂∈
[K] of this true value, and with the results v=(v1,v2,...,vn)∈Bn

of n≥0 verification techniques (2) applied to the DNN and its
input that produced the estimate k̂. As such, the states ŝ of a
DEEPDECS DNN-perception pDTMC model

M̂=(Ŝ,ŝ0,P̂ ,L̂,R̂) (17)

are tuples that extend (11) with k̂ and v:

ŝ=(z,k,k̂,v,t,c). (18)

The derivation of the DEEPDECS DNN-perception pDTMC
from the perfect-perception pDTMC is shown in Figure 2b.
To provide a formal definition of this derivation, we use the
notation s(ŝ)=(z,k,t,c) to refer to the element from Z×[K]×
[3]×C that corresponds to a generic element corresponding to
ŝ∈Z×[K]2×Bn×[3]×C. With this notation, the components
of the pDTMC M̂ are obtained from the perfect-perception
pDTMC M=(S,s0,P,L,R) of the same autonomous system
and the probabilities (7) as follows:

Ŝ={ŝ∈Z×[K]2×Bn×[3]×C |s(ŝ)∈S}; (19)

4

dtmc

module ManagedComponents
z : Z init z0;

[action1] t=1∧ guardZ
1(z,c)→ eZ11:(z’=z11)+. . . +eZ1N1

:(z’=z1N1
);

[action2] t=1∧ guardZ
2(z,c)→ eZ21:(z’=z21)+. . . +eZ2N2

:(z’=z2N2
);

. . .
endmodule

module Environment
k : [K] init k0;

[monitor] t=2∧ guardK
1 (z,k)→ eK11:(k’=1)+. . . +eK1K :(k’=K);

[monitor] t=2∧ guardK
2 (z,k)→ eK21:(k’=1)+. . . +eK2K :(k’=K);

. . .
endmodule

module PerfectPerceptionController
c : C init c0;

[decide] t=3∧ guardC
1(z,k,c)→

∑
c′∈C

(
xzkcc′ :(c’=c′)

)
;

[decide] t=3∧ guardC
2(z,k,c)→

∑
c′∈C

(
xzkcc′ :(c’=c′)

)
;

. . .
endmodule

module Turn
t : [1..3] init 1;

[actionα] true→ 1:(t’=2);
[actionβ] true→ 1:(t’=2);
. . .
[monitor] true→ 1:(t’=3);
[decide] true→ 1:(t’=1);

endmodule

(a) A DEEPDECS perfect-perception pDTMC comprises
four modules. The module ManagedComponents mod-
els the controlled components of the system by specify-
ing how their state z changes as a result of set of actions
Act={action1,action2,...} performed when the value of the
turn flag is t=1; the guards of this module depend only on the
state z of the components and the control parameters c. The
module Environment models how the evolving state of envi-
ronment k changes when observed through monitoring when
the value of the turn flag is t=2; the guards of this module de-
pend only on the state z of the system components and on the
current state k of the environment. The controller decisions
are defined by the PerfectPerceptionController module with
parameters (13). Finally, the module Turn sets the turn flag
to t=2 when, after specific actions actionα,actionβ,...∈Act,
it is the monitor’s turn to observe the environment, sets the
turn flag to t=3 after each such monitor action to trigger a
controller decision, and restores the turn flag to t=1 imme-
diately after that to enable the controlled system components
to react to the new control parameters of the system.

dtmc

module ManagedComponents
z : Z init z0;

[action1] t=1∧ guardZ
1(z,c)→ eZ11:(z’=z11)+. . . +eZ1N1

:(z’=z1N1
);

[action2] t=1∧ guardZ
2(z,c)→ eZ21:(z’=z21)+. . . +eZ2N2

:(z’=z2N2
);

. . .
endmodule

module EnvironmentWithDNNPerception
k : [K] init k0;

k̂ : [K] init k0;
v : Bn init (true,true,. . . ,true);

[monitor] t=2∧ guardK
1 (z,k)→

∑
k̂′∈[K]

∑
v′∈Bn

(
eK11p1k̂′v′ :(k’=1 & k̂’=k̂′ & v=v′)

)

+. . .+
∑

k̂′∈[K]

∑
v′∈Bn

(
eK1KpKk̂′v′ :(k’=K & k̂’=k̂′ & v=v′)

)
;

[monitor] t=2∧ guardK
2 (z,k)→

∑
k̂′∈[K]

∑
v′∈Bn

(
eK21p1k̂′v′ :(k’=1 & k̂’=k̂′ & v=v′)

)

+. . .+
∑

k̂′∈[K]

∑
v′∈Bn

(
eK2KpKk̂′v′ :(k’=K & k̂’=k̂′ & v=v′)

)
;

. . .
endmodule

module DNNPerceptionController
c : C init c0;

[decide] t=3∧ guardC
1(z,k̂,c)∧ v=(false,false,. . . ,false)→

∑
c′∈C

(
x
zk̂vcc′

:(c’=c′)
)
;

. . .

[decide] t=3∧ guardC
1(z,k̂,c)∧ v=(true,true,. . . ,true)→

∑
c′∈C

(
x
zk̂vcc′

:(c’=c′)
)
;

[decide] t=3∧ guardC
2(z,k̂,c)∧ v=(false,false,. . . ,false)→

∑
c′∈C

(
x
zk̂vcc′

:(c’=c′)
)
;

. . .

[decide] t=3∧ guardC
2(z,k̂,c)∧ v=(true,true,. . . ,true)→

∑
c′∈C

(
x
zk̂vcc′

:(c’=c′)
)
;

. . .
endmodule

module Turn
t : [1..3] init 1;

[actionα] true→ 1:(t’=2);
[actionβ] true→ 1:(t’=2);
. . .
[monitor] true→ 1:(t’=3);
[decide] true→ 1:(t’=1);

endmodule

(b) DEEPDECS DNN-perception pDTMC model obtained by performing the
highlighted modification in the perfect-perception pDTMC from Figure 2a. As
a consequence of using a DNN to perceive the true environment state k, the
DNNPerceptionController does not have access to its value; instead, it needs
to rely on its classification k̂ and on the verification result v, respectively. The
EnvironmentWithDNNPerception module continues to track the ground truth
k (necessary to establish the true safety, energy consumption, and other key
properties of the system). Additionally, this module uses the DNN uncertainty
quantification probabilities (7) to model the evolution of the DNN output k̂ and
the online DNN verification result v associated with this output. The modules
ManagedComponents and Turn are unchanged.

Figure 2: Perfect-perception and DNN-perception DEEPDECS pDTMC models

ŝ0=(z0,k0,k0,true,...,true,t0,c0), (20)

where (z0,k0,t0,c0)= s0; and, for any states ŝ=(z,k,k̂,v,t,c),
ŝ′=(z′,k′,k̂′,v′,t′,c′)∈Ŝ,

P̂(ŝ,ŝ′)=





P(s(ŝ),s(ŝ′)), if t=1∧(k̂′,v′)=(k̂,v)

P(s(ŝ),s(ŝ′))·pk′k̂′v′, if t=2

xzk̂vcc′, if t=3∧(z′,k′,k̂′,v′,t′)
=(z,k,k̂,v,1)

0, otherwise
(21)

where xzk̂vcc′ are controller parameters associated with state

pairs ((z,k,k̂,v,3,c),(z,k,k̂,v,3,c′))∈Ŝ2 such that xzk̂vcc′ ∈{0,1}
for deterministic controllers or xzk̂vcc′ ∈ [0,1] for probabilistic
controllers, and

∑
c′∈C xzk̂vcc′ =1. Finally, for any state ŝ∈Ŝ,

L̂(ŝ)=L(s(ŝ)), (22)

and

R̂={(ρ̂,̂ι)∈(Ŝ→R≥0)×(Ŝ×Ŝ→R≥0) |
∃(ρ,ι)∈R :

(
∀ŝ∈Ŝ : ρ̂(ŝ)=ρ(s(ŝ))

)
∧

(
∀ŝ,ŝ′∈Ŝ : ι̂(ŝ,ŝ′)=ι(s(ŝ),s(ŝ′))

)
} (23)

5

The following result shows that the DEEPDECS module
augmentation produces a valid pDTMC.

Theorem 1. The tuple (17) with the elements defined by (19)–
(23) is a valid pDTMC that satisfies the following variant of (12):

∀ŝ=(z,k,k̂,v,t,c),ŝ′=(z′,k′,k̂′,v′,t′,c′)∈Ŝ :(
(t=1∧P(ŝ,ŝ′)>0) =⇒ (k′,k̂′,v′,c′)=(k,k̂,v,c)∧ t′<3

)
∧(

(t=2∧P(ŝ,ŝ′)>0) =⇒ (z′,c′)=(z,c)∧ t′=3
)
∧

(
(t=3∧P(ŝ,ŝ′)>0) =⇒ (z′,k′,k̂′,v′)=(z,k,k̂,v)∧ t′=1

)
.

(24)

Proof. To demonstrate that (17) is a valid pDTMC, we need to
show that, for any state ŝ=(z,k,k̂,v,t,c)∈Ŝ,

∑
ŝ′∈ŜP̂(ŝ,ŝ

′)=1.
We prove this and property (24) for each value of t∈ [3].

For t = 1, (21) implies that P̂(ŝ, ŝ′) > 0 only for states
ŝ′=(z′,k′,k̂,v,t′,c′)∈Ŝ, so

∑

ŝ′∈Ŝ

P̂(ŝ,ŝ′)=
∑

(z′,k′,k̂,v,t′,c′)∈Ŝ

P̂(ŝ,ŝ′)

=
∑

(z′,k′,k̂,v,t′,c′)∈Ŝ

P((z,k,1,c),(z′,k′,t′,c′))

=
∑

(z′,k′,t′,c′)∈S

P((z,k,1,c),(z′,k′,t′,c′))=1,

as the last sum adds up all outgoing transition probabilities
of state (z′, k′, t′, c′) from the perfect-perception pDTMC
M. Consider now any ŝ′ = (z′,k′,k̂′,v′,t′,c′) ∈ Ŝ such that
P̂(ŝ,ŝ′)>0. We already noted that this requires k̂′= k̂∧v′=v.
Additionally, since P̂(ŝ, ŝ′) = P((z,k,1, c), (z′, k′, t′, c′)), (12)
implies that k′=k∧ c′=c∧ t′<3, as required by (24).

For t=2, we have

∑

ŝ′∈Ŝ

P̂(ŝ,ŝ′)=
∑

(z′,k′,k̂′,v′,t′,c′)∈Ŝ

(
P̂(ŝ,ŝ′)pk′k̂′v′

)

=
∑

(z′,k′,t′,c′)∈S

(
P((z,k,2,c),(z′,k′,t′,c′))·

∑

(k̂′,v′)′∈[K]×Bn

pk′k̂′v′

)

=
∑

(z′,k′,t′,c′)∈S

(P((z,k,2,c),(z′,k′,t′,c′))·1)=1.

Consider again a generic ŝ′=(z′,k′,k̂′,v′,t′,c′)∈ Ŝ such that
P̂(ŝ,ŝ′)> 0. Since P̂(ŝ,ŝ′) = P((z,k,2,c),(z′,k′,t′,c′)) ·pk′k̂′v′,
(12) implies that (z′,c′)=(z,c)∧ t′=3.

Finally, for t=3, we have
∑

ŝ′∈ŜP̂(ŝ,ŝ
′)=

∑
c′∈C xzk̂vcc′ =1

and the property (24) is explicitly stated in (21).

Importantly, the next result shows that the controller deci-
sions do not depend on the true state k of the environment.

Theorem 2. For any (z,k1,k̂,v,3,c),(z,k2,k̂,v,3,c)∈ Ŝ and any
control parameters c′∈C,

P̂((z,k1,k̂,v,3,c),(z,k1,k̂,v,1,c
′))

=P̂((z,k2,k̂,v,3,c),(z,k2,k̂,v,1,c
′)). (25)

Proof. According to definition (21), both transition probabilities
from (25) are equal to xzk̂vcc′.

Finally, the following theorem and its corollaries prove that
for each (probabilistic) discrete-event controller that satisfies
constraints (15) and Pareto-optimises objectives (16) for the
autonomous system with DNN perception there is an equiva-
lent (probabilistic) discrete-event controller for the autonomous
system with perfect perception, but the converse does not hold.

Theorem 3. Let x and x̂ be valid instantiations
of the perfect-perception controller parameters{
xzkcc′ ∈ [0, 1]

∣∣ (∃k ∈ [K].(z, k, 3, c) ∈ S) ∧ c′ ∈ C
}

from (13) and of the DNN-perception controller parameters{
xzk̂vcc′ ∈ [0,1]

∣∣(∃k∈ [K].(z,k,k̂,v,3,c)∈ Ŝ)∧ c′∈C
}

from (21),
respectively. Also, let Mx and M̂x̂ be the instances of the
perfect-perception pDTMC M and DNN-perception pDTMC
M̂ corresponding to the controller parameters x and x̂,
respectively. With this notation, we have

pmc(Φ,M̂x̂)=pmc(Φ,Mx), (26)

and
pmc(ΦR,M̂x̂)=pmc(ΦR,Mx), (27)

for any (quantitative) PCTL state formula Φ and reward state
formula ΦR if and only if

xzkcc′ =
∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′ (28)

for all (z,k,3,c)∈S and c′∈C.

Proof. Let PathsMx(s0) and PathsM̂x̂(ŝ0) be the set of all
Mx paths starting at s0 and the set of all M̂x̂ paths starting
at ŝ0, respectively. Equalities (26) and (27) hold iff, for any
path π = s0s1s2 ... ∈ PathsMx(s0), set of associated paths
Π̂=

{
ŝ0ŝ1ŝ2...∈PathsM̂x̂(ŝ0) |∀i≥0 .s(ŝi)=si

}
, and i≥0, the

following property holds:

P(si,si+1)=
∑

ŝ0ŝ1ŝ2...∈Π̂

P̂(ŝi,ŝi+1). (29)

This is required because, according to (22) and (23), the
(i+1)-th state of π and of any path π̂ ∈ Π̂ are labelled with
the same atomic propositions and assigned the same state
rewards, respectively; and, according to (23), the transition
rewards for the transition between their i-th state and (i+1)-th
state are also identical. Thus, if this equality holds, the path π
and path set Π̂ are indistinguishable in the evaluation of PCTL
state and state reward formulae; and, if the equality does not
hold, a labelling function L and a PCTL state formula Φ (or
state reward formula ΦR) can be handcrafted to provide a
counterexample for (26) (or for (27)).

Given the definition of P̂ from (21), property (29) holds
trivially for any state si=(z,k,t,c)∈S with t=1, and also holds
for states si with t=2 because

∑

ŝ0ŝ1ŝ2...∈Π̂

P̂(ŝi,ŝi+1)=
∑

ŝ0ŝ1ŝ2...∈Π̂

(P(si,si+1)·pkk̂i+1vi+1
)

=P(si,si+1)·
∑

ŝ0ŝ1ŝ2...∈Π̂

pkk̂i+1vi+1
=P(si,si+1),

6

where k̂i+1 and vi+1 represent the DNN prediction and
verification result for each state ŝi+1 from the sum, respectively.
Finally, for t = 3, property (29) holds if and only if the
perfect-perception and DNN-perception controllers select each
next controller configuration c′∈C with the same probability
for si and for all the states ŝi from Π̂ taken together, i.e., if and
only if (28) holds, which completes the proof.

Properties (26) and (27) imply that any constraint (15) is
either satisfied or violated by both Mx and M̂x̂ (since the
two DTMCs yield the same value for the system property
associated with the constraint). Likewise, Mx and M̂x̂ are
guaranteed to achieve the same value for the system property
associated with any optimisation objective (16).

Corollary 1. For any combination of constraints (15) and op-
timisation objectives (16) for which there exists a probabilistic
DNN-perception controller that satisfies the constraints, there
exists also a probabilistic perfect-perception controller that
satisfies the same constraints and yields the same values for
the PCTL properties from the optimisation objectives.

Proof. We prove this result by showing that the application
of (28) to any valid instantiation of the DNN-perception
controller parameters xzk̂vcc′ produces a valid instantiation
of the perfect-perception controller parameters xzkcc′. First,
since xzk̂vcc′ ∈ [0,1] for any valid (z,k̂,v,c,c′) tuple, we have

0=
∑

k̂∈[K]

∑

v∈Bn

(pkk̂v ·0)≤
∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′ ≤
∑

v∈Bn

(pkk̂v ·1)=1,

so xzkcc′ ∈ [0,1] for any valid tuple (z,k,c,c′). Additionally, for
any valid combination of z, k and c, we have

∑

c′∈C
xzkcc′ =

∑

c′∈C

∑

k̂∈[K]

∑

v∈Bn

pkk̂vxzk̂vcc′

=
∑

c′∈C


xzk̂vcc′ ·


 ∑

k̂∈[K]

∑

v∈Bn

pkk̂v




=

∑

c′∈C

(
xzk̂vcc′ ·1

)
=1,

which completes the proof.

Corollary 2. There exist an infinite number of combinations
of constraints (15) and optimisation objectives (16) for which
there exists a probabilistic perfect-perception controller that
satisfies the constraints, and no DNN-perception controller
exists that satisfies the constraints and yields the same values
for the system properties from the optimisation objectives.

Proof. We prove this result by showing that, for an infinite num-
ber of instantiations x of the perfect-perception controller pa-
rameters xzkcc′, no valid instantiation x̂ of the DNN-perception
controller parameters xzk̂vcc′ satisfies (28). Let (k0,k̂0,v0) ∈
[K]2×Bn such that pk0k̂0v0

∈(0,1). Such combinations of true
class k, DNN-predicted class k̂ and verification results v exist,
as otherwise all pkk̂v∈{0,1}, which would require the DNN to
be perfectly accurate or to only err by always swapping class la-
bels in the same way, and this is not possible. Consider a state
ŝ=(z,k,k̂0,v0,3,c)∈Ŝ, any c′∈C, and any of the infinite number
of valid instantiations x of the perfect-controller parameters

such that xzk0cc′ =αzcc′pk0k̂0v0
+
∑

(k̂,v)∈[K]×Bn\{(k̂0,v0)}pk0k̂0v0

with αzcc′ ∈ [0,1]. We use (28) to calculate xzk̂0v0cc′
:

xzk̂0v0cc′
=
xzk0cc′−

∑
(k̂,v)∈[K]×Bn\{(k̂0,v0)}pkk̂vxzk̂vcc′

pk0k̂0v0

≥
xzk0cc′−

∑
(k̂,v)∈[K]×Bn\{(k̂0,v0)}pkk̂v

pk0k̂0v0

=
αzcc′pk0k̂0v0

pk0k̂0v0

=αzcc′.

Accordingly, the outgoing transition probabilities from the
considered state ŝ add up to

∑

c′∈C
xzk̂0v0cc′

≥
∑

c′∈C
αzcc′. (30)

As the right-hand side of this inequality can take any value in
the interval [0,#C], and the only valid value for

∑
c′∈Cxzk̂0v0cc′

is 1, we identified an infinite number of instantiations x for
which a valid instantiation x̂ cannot be built.

Corollary 2 shows that the decision-making capabilities
of infinitely many perfect-perception controllers cannot be
replicated by DNN-perception controllers. While this does not
indicate how many of these practically unachievable controllers
satisfy constraints (15) and Pareto-optimise objectives (16),
the proof of the corollary provides a hint about this by showing
in (30) that DNN-perception controllers do not exist for large
αzcc′ values, i.e., for scenarios when the perfect-perception
controller decides to use a specific configuration c′ with high
probability. Intuitively, these scenarios are highly relevant,
i.e., many perfect-perception controllers with no equivalent
DNN-perception controllers are likely to be Pareto-optimal.
For instance, the perfect-perception controller used for the
mobile robot application from the next section decides that
the robot should mostly or even always wait when a collision
with another mobile agent would otherwise occur. This line
of reasoning also implies that deterministic perfect-perception
controllers are likely to not have equivalent (probabilistic or
deterministic) DNN-perception controllers.

Stage 3: Controller synthesis. The controller synthesis
problem for the DNN-perception system involves finding in-
stantiations x̂ of the DNN-perception controller parameters for
which the pDTMC M̂ from (17) satisfies the constraints (15)
and is Pareto optimal with respect to the optimisation objec-
tives (16). Solving the general version of this problem precisely
is unfeasible. However, metaheuristics such as multi-objective
genetic algorithms for probabilistic model synthesis19,20

can be used to generate close approximations of the
Pareto-optimal controller set. Alternatively, exhaustive search
can be employed to synthesise the actual Pareto-optimal
controller set for systems with deterministic controllers and
small numbers of controller parameters, or—by discretising
the search space—an approximate Pareto-optimal controller
set for systems with probabilistic controllers. We demonstrate
the synthesis of DEEPDECS controllers through the use of
both metaheuristics and exhaustive search in the next section.

7

2 DEEPDECS Applications

Mobile-robot collision limitation. Recent research proposes
the use of DNN perception in the collision avoidance systems
of unmanned aircraft,21,22 autonomous marine vehicles23

and autonomous mobile robots.24 We used DEEPDECS to
develop a mobile robot collision-limitation controller inspired
by these applications. As shown in Figure 3a, we considered
a service robot tasked with travelling autonomously from
location A to location B, e.g., for the purpose of carrying
goods in a warehouse or hospital. Within this environment,
the robot may encounter and potentially collide with another
moving autonomous agent. We assume that these collisions
are not catastrophic, but that they incur damage to the robot
and slow it down. As such, the robot uses DNN perception
to assess the risk of collision at each intermediate waypoint
I, and decides whether to proceed to the next waypoint or to
wait for a while at waypoint I based on the DNN output.

The logic underpinning the operation of the robot at any
intermediate waypoint I is modelled by the perfect-perception
pDTMC in Figure 3b. As shown by the MobileRobot pDTMC
module, when reaching waypoint I the robot first uses its
sensors (lidar, cameras, etc.) to look for the “collider” (state
z = 0). If the collider is present in the vicinity of the robot
(which happens with probability pcollider, known from previous
executions of the task), the robot performs a check action
(state z=1). As defined in the module Collider, this leads to
the execution of a monitor action to predict whether travelling
to the next waypoint would place the robot on collision course
with the other agent (which happens with probability pocc,
also known from historical data) or not. Each monitor action
activates the controller, whose behaviour is specified by the
PerfectPerceptionController module. A probabilistic controller
with two parameters is used: the controller decides that
the robot should wait with probability x1 when no collision
is predicted (k = 1) and with probability x2 if a collision is
predicted (k=2). Depending on this decision, the robot will
either retry after a short wait or proceed and travel to the next
waypoint, reaching the end of the decision-making process.
Finally, when the collider is absent (with probability 1−pcollider
in the first line from the MobileRobot module), the robot can
travel without going through these intermediate actions.

We used data from a simulator of the scenario in Figure 3a
to train a collision-prediction DNN. We then applied DEEP-
DECS (Figure 1) to this DNN, a test dataset collected using
the same simulator, the perfect-perception pDTMC model
from Figure 3b, and a set of PCTL-encoded requirements
demanding controllers that can (a) guarantee a collision-free
journey with probability of at least 0.75:

C1 : P≥0.75[¬collisionUdone] (31)

and (b) achieve an optimal trade-off between maximising this
probability and minimising the travel time:

O1 : maximise P=?[¬collisionUdone]
O2 : minimise Rtime

=? [Fdone]
(32)

We applied DEEPDECS to these inputs four times, using
different combinations of DNN verification methods in the

DNN uncertainty quantification stage: (i) no DNN verification
method; (ii) only verif 1 from (4); (iii) only verif 2 from (3); and
(iv) both verif 1 and verif 2. Figure 3c shows DNN-perception
pDTMC model produced by the model augmentation
DEEPDECS stage for combination (ii), and Figure 4 presents
the results from the other DEEPDECS stages and from the
testing of the synthesised controllers for all combinations.
Figure 4a presents the probability of the DNN making a
correct prediction across the four setups after training. The
DNN achieved high accuracy, and as verification methods are
introduced it is observed that the “verified” predictions have
a higher probability of being correct.

The controller design space was explored via discretising
the parameter space, with each of the parameters x1false, x1true,
x2false and x2true varied between 0 and 1 with a step size of
0.1, and every (x1false,x1true,x2false,x2true) combination obtained
in this way was analysed. The setup with perfect perception
(Figure 3b) was analysed similarly for evaluation purposes.
Pareto fronts were generated from the modelled controller
parameter combinations, see Figure 4b, clearly showing an
intuitive balance of collision probability and time to complete
journey; to achieve a faster time the less likely it will be a safe
journey. The optimal results, expectedly, are achieved with a
perfect perception, and the front achieved when no verification
DNN method is used is always outperformed by the perfect
perception front, other than at two extreme points. When
verification methods are introduced, the Pareto fronts improve
and get closer to the perfect DNN Pareto front. There are three
instances where the Pareto fronts achieve the same result;
first when the parameters are all set to 0 (travel regardless
of prediction), 0.5 (always flip a balanced coin regardless of
prediction), or 1 (always wait when there is a collider present).

We used two established Pareto front indicators to analyse
the quality of the Pareto fronts: the Inverse Generational
Distance (IGD)25 and the Hypervolume (HV).26 IGD uses
a reference frame and calculates, for each point on the
reference frame, the distance to the closest point on the
Pareto front, with an average then extracted. HV also uses
a reference frame to generate a nadir point which is then
used with the Pareto front to determine how much of a region
is covered by said Pareto front. Smaller IGD and higher HV
values indicate a better Pareto front. The reference frame
used for both IGD and HV was the Pareto front generated
from the perfect perception setup, since this is the ideal Pareto
front that a 100% accurate DNN would achieve. From these
indicators it is observed that the setups using verification
methods produces higher quality Pareto fronts than the no
verification DNN method, see Figure 4c. Both IGD and HV
also indicate that using both verification methods led to a
better Pareto front than just utilising one verification method.

The Pareto fronts generated from the models were validated
by integrating the synthesised controllers with the original
mobile-robot simulation. With each synthesised controller,
the simulator conducted a number of journeys for the robot
with the same probabilities of collider presence and resultant
collision if the robot was to travel, with an average time and
probability of robot collision extracted. As the number of
waypoints across these journeys increases, the difference

8

A

B

x

y}} θ{s, θ̇}

I I

(a) A mobile robot (darker blue) travelling between locations A and B may collide with another mobile agent (red) when moving from its
current waypoint I to the next waypoint. A two-class DNN predicts whether the robot is on collision course based on the relative horizontal
distance x and vertical distance y between the robot and the collider, and the speed s, angle θ and angular velocity θ̇ of the collider.

dtmc

const double pcollider = 0.8;

module MobileRobot // ManagedComponents
z : [0..4] init 0; // 0:check collider, 1:collider detected,

// 2:check wait, 3:no collider, 4:done
[look] t=1 ∧ z=0 → pcollider:(z’=1) + (1-pcollider):(z’=3);
[check] t=1 ∧ z=1 → 1:(z’=2);
[retry] t=1 ∧ z=2 ∧ wait → 1:(z’=0);
[proceed] t=1 ∧ z=2 ∧ ¬wait → 1:(z’=3);
[travel] t=1 ∧ z=3 → 1:(z’=4);
[end] t=1 ∧ z=4 → 1:(z’=4);

endmodule

const double pocc = 0.25;

module Collider // Environment
k : [1..2] init 1; //1:not on collision course (occ), 2:occ

[monitor] t=2 → (1-pocc):(k’=1) + pocc:(k’=2);
endmodule

const double x1; // prob. of waiting when occ
const double x2; // prob. of waiting when not occ

module PerfectPerceptionController
wait : bool init false;

[reaction] t=3 ∧ k=1 → x1:(wait’=true) + (1-x1):(wait’=false);
[reaction] t=3 ∧ k=2 → x2:(wait’=true) + (1-x2):(wait’=false);

endmodule

module Turn
t : [1..3] init 1;

[check] true → 1:(t’=2);
[monitor] true → 1:(t’=3);
[decide] true → 1:(t’=1);

endmodule

rewards ”time”
[travel] true : 9.95;
[proceed] k=2 : 2.57;
[retry] true : 5;

endrewards

label ”collision” = z=3 & k=2;
label ”done” = z=4;

(b) Perfect-perception pDTMC model of the mobile robot journey
between two successive waypoints. The model states are tuples
(z,k,t,wait)∈{0,1,...,4}×[2]×[3]×B with the semantics from (11).
The reward structure from models the time taken by each robot
actions: 9.95 time units to travel between adjacent waypoints
(without collision), 2.57 additional time units when the robot de-
cides to go despite being on collision course, and five time units
when the robot decides to retry after a short wait; the other robot
actions are assumed to take negligible time. Two atomic propo-
sitions are used by the labelling function at the end of the model:
collision, for states in which the robot travels despite being on colli-
sion course, and done, for states that mark the end of the journey.

dtmc

const double pcollider = 0.8;

module MobileRobot // ManagedComponents
z : [0..4] init 0;

[look] t=1 ∧ z=0 → pcollider:(z’=1) + (1-pcollider):(z’=3);
[check] t=1 ∧ z=1 → 1:(z’=2);
[retry] t=1 ∧ z=2 ∧ wait → 1:(z’=0);
[proceed] t=1 ∧ z=2 ∧ ¬wait → 1:(z’=3);
[travel] t=1 ∧ z=3 → 1:(z’=4);
[end] t=1 ∧ z=4 → 1:(z’=4);

endmodule

const double pocc = 0.25;
const double p11false = eq. (7)
. . .
const double p22true = eq. (7)

module ColliderWithDNNPerception // EnvironmentWithDNNPerception
k : [1..2] init 1; // 1:not occ, 2:occ

k̂ : [1..2] init 1; // DNN predicts 1:not occ, 2:occ
v1 : bool init false;

[monitor] t=2 → (1-pocc)·p11false:(k’=1)&(k̂’=1)&(v′1=false)

+ (1-pocc)·p11true:(k’=1)&(k̂’=1)&(v′1=true)

+ (1-pocc)·p12false:(k’=1)&(k̂’=2)&(v′1=false)

+ (1-pocc)·p12true:(k’=1)&(k̂’=2)&(v′1=true)

+ pocc·p21false:(k’=2)&(k̂’=1)&(v′1=false)

+ pocc·p21true:(k’=2)&(k̂’=1)&(v′1=true)

+ pocc·p22false:(k’=2)&(k̂’=2)&(v′1=false)

+ pocc·p22true:(k’=2)&(k̂’=2)&(v′1=true);
endmodule

const double x1false; // DNN predicts not occ and v1 returns false
const double x1true; // DNN predicts not occ and v1 returns true
const double x2false; // DNN predicts occ and v1 returns false
const double x2true; // DNN predicts occ and v1 returns true

module DNNPerceptionController
wait : bool init false;

[decide] t=3 ∧ k̂=1 ∧ ¬v1 → x1false:(wait’=true) + (1-x1false):(wait’=false);

[decide] t=3 ∧ k̂=1 ∧ v1 → x1true:(wait’=true) + (1-x1true):(wait’=false);

[decide] t=3 ∧ k̂=2 ∧ ¬v1 → x2false:(wait’=true) + (1-x2false):(wait’=false);

[decide] t=3 ∧ k̂=2 ∧ v1 → x2true:(wait’=true) + (1-x2true):(wait’=false);
endmodule

module Turn
t : [1..3] init 1;

[check] true → 1:(t’=2);
[monitor] true → 1:(t’=3);
[decide] true → 1:(t’=1);

endmodule

. . .

(c) DNN-perception pDTMC model of the mobile robot journey
between two successive waypoints. The probabilities pkk′v1 from the
ColliderWithDNNPerception module quantify the DNN accuracy for
“verified” inputs (v1=true) and “unverified” inputs (v1=false), and are
used to model the class k̂ predicted by the DNN when the true class is
k. The decisions of the four-parameter probabilistic controller depend
on the DNN prediction k̂ and the online verification result v1.

Figure 3: Collision limitation for a mobile robot tasked with traversing a known environment through the use of waypoints

9

0.78

0.22

0.91

0.09

11 12 22 21
0

0.5

1

 0.5 0.5

0.89

0.11

0.95

0.05

0.93

0.07

11F 12F 22F 21F 11T 12T 22T 21T
0

0.5

1

0.49 0.51

0.83

0.17

 0.9

 0.1

0.94

0.06

11F 12F 22F 21F 11T 12T 22T 21T
0

0.5

1

0.49 0.51

0.83

0.17

 0 0 0 0

0.55
0.45

0.96

0.04

0.95

0.05

0.93

0.07

11FF 12FF 22FF 21FF 11FT 12FT 22FT 21FT 11TF 12TF 22TF 21TF 11TT 12TT 22TT 21TT
0

0.5

1

(a) Probability that a class-k DNN input is (mis)classified as class k′ and satisfies verif i=(v1,v2,...,vn)∈Bn

15 20 25
tim e

0.8

0.85

0.9

0.95

1

co
lli
si
on

do
ne

(b) Pareto front associated with the set of Pareto-optimal DEEPDECS controllers

no verification

0.06

verif1
verif2

verif1 and verif2

no verification
verif1
verif2

verif1 and verif2

0.14 0.22
IGD

9.82 9.9 9.98
HV

10.06

(c) Inverted Generational Distance (IGD) and
hypervolume (HV) quality indicator values for the
DNN-perception controller Pareto fronts: smaller
IGD values and larger HV values indicate better
Pareto fronts (i.e., Pareto fronts closer to the
ideal-perception Pareto front).

(d) Difference between the model-based and simulation-based probability of collision-free travel and travel time for the Pareto-optimal
DEEPDECS controllers from Figure 4b for 100 waypoints (left), 1000 waypoints (middle) and 10000 waypoints (right).

Figure 4: DEEPDECS controller synthesis and testing results for the mobile robot collision limitation

10

between the simulator and the model decreases, see
Figure 4d, thus validating the models and controllers used.

Driver-attentiveness management. The recent adoption of
the first United Nations regulation on vehicles with Level 3
automation27 has paved the way for the safe introduction of
shared-control passenger cars with Automated Lane Keeping
Systems (ALKS). In certain traffic environments detailed in the
regulation—and for as long as the driver is attentive—these
cars will be able to drive entirely autonomously. However,
ALKS can issue transition demands requesting the driver to
take over the driving task when the car approaches traffic
conditions outside its ODD. Transition demands will be issued
timely, enabling an attentive driver to resume manual driving
safely. If the driver is unresponsive or becomes inattentive
and ALKS-issued alerts meant to restore driver attentiveness
are ineffective, a minimum-risk manoeuvre (e.g., bringing the
car to a standstill) will be performed.

We applied DEEPDECS to design a proof-of-concept driver-
attentiveness management system for ALKS-enabled cars.
Developed as part of our SafeSCAD projectf, this system uses
(Figure 5a): (i) specialised sensors to monitor key car param-
eters (velocity, lane position, etc.) and driver’s biometrics (eye
movement, heart rate, etc.), (ii) a DNN to predict the driver’s re-
sponse to a transition demand, and (iii) a software controller to
issue visual/acoustic/haptic alerts when the driver is inattentive.

We used an existing DNN trained and validated with
driver data from a SafeSCAD user study carried out within
a driving simulator.28 The test dataset used for our DNN
uncertainty quantification came from the same study, and the
perfect-perception pDTMC model provided to DEEPDECS
(shown in Figure 5b) is a significantly revised version of a
model we proposed in preliminary SafeSCAD work.29 Finally,
the controller requirements comprise two constraints that limit
the maximum expected risk and driver nuisance accrued
over a 45-minute driving trip, and two optimisation objectives
requiring that the same two measures are minimised:

C1 : Rrisk
≤100[C

≤2000]

C2 : Rnuisance
≤6×103[C

≤2000]

O1 : minimise Rrisk
=?[C

≤2000]

O2 : minimise Rnuisance
=? [C≤2000]

(33)

where each occurrence of the PCTL reward operator R
is annotated with the name of the reward structure from
Figure 5b it refers to (i.e., ‘risk’ of ‘nuisance’). The 2000 time-
steps from the PCTL cumulative reward properties correspond
to the 45 minutes of the journey: verifying the driver state
every 4s requires 667 verifications over 2667s, and each
verification is modelled by three pDTMC time-steps, one for
the monitoring of the driver state, one for the controller to
decide the appropriate alerts for the observed state, and one
for the decided alerts to be issued in order to warn the driver.

The DNN verification methods verif 1 and verif 2 from (3)
and (4) were used in all possible combinations (i.e., alone,
together, and neither) in the DEEPDECS DNN uncertainty

fSafety of Shared Control in Autonomous Driving (cutt.ly/Safe-SCAD)

quantification stage. Figure 6a shows the DNN-perception
pDTMC obtained in the model augmentation stage using
verification results produced when verif 1 was used alone,
and Figures 6b and 6c compare the controller Pareto fronts
obtained for all these combinations to the Pareto front
associated with the perfect-perception model from Figure 5b.

The search space in this case study (812 controller
parameter combinations when both DNN verification methods
are used) is significantly larger than for the discretised robot
collision avoidance scenario. As such, an exhaustive search
to determine the Pareto-optimal controllers is infeasible.
Therefore EvoChecker,20 which adopts multiobjective genetic
algorithms, was employed to generate close approximations
of the Pareto-optimal controllers. The Pareto fronts, see
Figure 6b, convey a similar relationship to that displayed by the
Pareto fronts in the robot collision avoidance case; the inclu-
sion of verification methods achieves Pareto-optimal controllers
closer to the perfect-perception Pareto fronts. Furthermore,
the knee point of the verif1 and verif1 and verif2 fronts are
closest to the knee point of the perfect DNN front. These
two fronts share a similar frontier in general. This is reflected
further in the quantitative analysis, Figure 6c, with the IGD
values of these fronts being the smallest out of the four setups.

The HV indicator also supports inclusion of verification meth-
ods, as it strongly shows the no verification setup performs the
worse. The two best setups were, again, verif1 on its own and
the verif1 and verif2 setup, with HV values of 8.91×105 and
8.89×105 respectively. This is still quite a large gap between
the two fronts, though this is not surprising. The verif1 Pareto
front has the extremes significantly further apart, thus resulting
in a significantly higher HV value. It is perhaps best to note
that the two absolute extremes can be achieved in all setups;
for minimised risk, perform the most cautious action of issuing
all alerts regardless of driver’s attention, and vice versa for min-
imising nuisance. The state space for a controller integrated
with two verification methods is twice the size of using only
one, which therefore requires a significantly larger evaluation
time to properly search and find the Pareto-optimal controller.
We expect that if the population size and evaluation are of sub-
stantial size, the two extremes would be found (in all setups)
and the HV would in turn favour the verif1 and verif2 setup.

Another interesting outcome is that while the same
verification methods were applied to both studies, the different
scenarios dictated which method was more valuable; verif2
in the robot collision avoidance study and verif1 in the
SafeSCAD scenario. This is indicative of the appropriateness
of creating the confusion matrices and models with respect to
the specific verification methods outcomes rather than using
a collective count of verification methods satisfied.

3 Discussion

To operate safely and effectively, autonomous systems need
to perceive, and respond to, changes in their environment.
Increasingly, this perception involves some form of machine
learning—often a deep-learning component that maps sensor
data to predefined classes of environmental states or events.
Autonomous system controllers, typically implemented as tra-

11

Online DNN
verification

DNN perception
component

DeepDECS
Pareto-optimal

controllerverif 1 verif n

(1) (2) (3)

(a) SafeSCAD driver-attentiveness management system. Data from car sensors (1) and driver biometric sensors (2) are supplied to a
DNN perception component that classifies the driver state as attentive, semi-attentive or inattentive. The DEEPDECS controller decides
when optical, acoustic and/or haptic alerts (3) should be used to increase the driver’s attentiveness.

1 dtmc
2
3 module Alerts // ManagedComponents
4 z : [0..7] init 0;
5
6 [warn] t=1 → 1:(z’=c);
7 endmodule
8
9 // probabilities pdkk′c that driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
10 const double pd110 = 0.99775;

. . .
81 const double pd337 = 0.809;
82
83 module Driver // Environment
84 k : [1..3] init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)
85
86 // driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
87 [monitor] t=2 ∧ k=1 ∧ z=0 → pd110:(k’=1) + pd120:(k’=2) + pd130:(k’=3);

. . .
110 [monitor] t=2 ∧ k=3 ∧ z=7 → pd317:(k’=1) + pd327:(k’=2) + pd337:(k’=3);
111 endmodule
112
113 const int x1; // alerts to be issued when driver is found attentive (k = 1)
114 const int x2; // alerts to be issued when driver is found semi-attentive (k = 2)
115 const int x3; // alerts to be issued when driver is found inattentive (k = 3)
116
117 module PerfectPerceptionController
118 c : [0..7] init 0;
119
120 [decide] t=3 ∧ k=1 → 1:(c’=x1);
121 [decide] t=3 ∧ k=2 → 1:(c’=x2);
122 [decide] t=3 ∧ k=3 → 1:(c’=x3);
123 endmodule
124
125 module Turn
126 t : [1..3] init 1;
127
128 [warn] true → 1:(t’=2);
129 [monitor] true → 1:(t’=3);
130 [decide] true → 1:(t’=1);
131 endmodule

132
133 // risk when driver is not attentive
134 rewards ”risk”
135 [monitor] k=1 : 0; // no risk
136 [monitor] k=2 : 1; // low risk
137 [monitor] k=3 : 4; // high risk
138 endrewards
139
140 // driver nuisance caused by alerts
141 rewards ”nuisance”
142 [monitor] z=1 : (k=1)?6:2;
143 [monitor] z=2 : (k=1)?3:1;
144 [monitor] z=3 : (k=1)?8:3;
145 [monitor] z=4 : (k=1)?10:3;
146 [monitor] z=5 : (k=1)?16:5;
147 [monitor] z=6 : (k=1)?11:4;
148 [monitor] z=7 : (k=1)?20:6;
149 endrewards

(b) Perfect-perception pDTMC model of the SafeSCAD system. The model states are tuples (z,k,t,c)∈ [7]× [3]2×{0,1,...,7} with the
semantics from (11). The Alerts module is responsible for warning the driver by “implementing” the controller-decided alerts c. The Driver
module models the driver attentiveness level k, which is monitored every 4s; the probabilities of transition between attentiveness levels
depend on the combination of alerts z in place. The control parameters x1,x2,x3∈{0,1,...,7} are binary encodings of the alerts to be activated
for each of the three driver attentiveness levels, e.g., x3=5=101(2) corresponds to a deterministic-controller decision to have the optical
alert active, the acoustic alert inactive, and the haptic alert active when the driver is inattentive. The reward structures from lines 134–138 and
141–149 quantify the risk and driver nuisance associated with the different driver attentiveness levels and alert combinations, respectively. The
expressions ‘(k=1)?value1 :value2’ from lines 142–148 evaluate to the larger value1 if the driver is attentive (i.e., k=1), and value2 otherwise.

Figure 5: Driver-attentiveness management for shared-control autonomous driving

12

1 dtmc
2
3 module Alerts // ManagedComponents
4 z : [0..7] init 0;
5
6 [warn] t=1 → 1:(z’=c);
7 endmodule
8
9 // probabilities pdkk′c that driver attentiveness changes from level k∈{1, 2, 3} to level k′∈{1, 2, 3} given alerts z∈{0, 1, . . . , 7}
10 const double pd110 = 0.99775;

. . .
81 const double pd337 = 0.809;
82

83 // probabilities pkk̂v1
that DNN (mis)classifies the driver state k as k̂ when the online verification result is v1

84 const double p11false = eq. (7)
. . .

101 const double p33true = eq. (7)
102
103 module DriverWithDNNPerception // EnvironmentWithDNNPerception
104 k : [1..3] init 1; // driver status: attentive (k = 1); semi-attentive (k = 2); or inattentive (k = 3)

105 k̂ : [1..3] init 1; // DNN-predicted driver status: attentive (k̂ = 1); semi-attentive (k̂ = 2); or inattentive (k̂ = 3)
106 v1 : bool init false;
107

108 // driver attentiveness changes from level k to true level k′ and DNN-predicted level k̂′ given alerts z

109 [monitor] t=2 ∧ k=1 ∧ z=0 → pd110·p11false:(k’=1)&(k̂’=1)&(v1’=false) + pd110·p11true:(k’=1)&(k̂’=1)&(v1’=true) +

110 pd110·p12false:(k’=1)&(k̂’=2)&(v1’=false) + pd110·p12true:(k’=1)&(k̂’=2)&(v1’=true) +

111 pd110·p13false:(k’=1)&(k̂’=3)&(v1’=false) + pd110·p13true:(k’=1)&(k̂’=3)&(v1’=true) +

112 pd120·p21false:(k’=2)&(k̂’=1)&(v1’=false) + pd120·p21true:(k’=2)&(k̂’=1)&(v1’=true) +

113 pd120·p22false:(k’=2)&(k̂’=2)&(v1’=false) + pd120·p22true:(k’=2)&(k̂’=2)&(v1’=true) +

114 pd120·p23false:(k’=2)&(k̂’=3)&(v1’=false) + pd120·p23true:(k’=2)&(k̂’=3)&(v1’=true) +

115 pd130·p31false:(k’=3)&(k̂’=1)&(v1’=false) + pd130·p31true:(k’=3)&(k̂’=1)&(v1’=true) +

116 pd130·p32false:(k’=3)&(k̂’=2)&(v1’=false) + pd130·p32true:(k’=3)&(k̂’=2)&(v1’=true) +

117 pd130·p33false:(k’=3)&(k̂’=3)&(v1’=false) + pd130·p33true:(k’=3)&(k̂’=3)&(v1’=true);
. . .

325 endmodule
326

327 const int x1false; // alerts to be issued when driver is classified attentive (k̂ = 1) and verification result is false
. . .

332 const int x3true; // alerts to be issued when driver is classified inattentive (k̂ = 3) and verification result is true
333
334 module DNNPerceptionController
335 c : [0..7] init 0;
336

337 [decide] t=3 ∧ k̂=1 ∧ ¬v1 → 1:(c’=x1false);
. . .

342 [decide] t=3 ∧ k̂=3 ∧ v1 → 1:(c’=x3true);
343 endmodule
344
345 module Turn

. . .
351 endmodule

(a) DNN-perception pDTMC model of the SafeSCAD driver-attentiveness management system for the scenario when a single DNN
verification method is used to distinguish between “verified” (v1=true) and “unverified” (v1=false) DNN predictions of the driver’s attentiveness
level. Lines 103–111 show how all combinations of true (k′) and DNN-predicted (k̂′) driver attentiveness levels can be reached from the
attentive driver state (k=1) when no alerts are used (c=0). The six-parameter deterministic controller decides a combination of alerts
c for each pair of DNN-predicted driver atentiveness level k̂ and online DNN verification result v1 (lines 339-344). The Switch module and
the two reward structures from the pDTMC in Figure 5b are omitted for brevity.

0 2000 4000 6000
0

20

40

60

80

100

(b) Pareto front associated with the set of Pareto-optimal SafeSCAD controllers

no verification

0

×105

verif1
verif2

verif1 and verif2

no verification
verif1
verif2

verif1 and verif2

200 400
IGD

8.2 8.6 9.0
HV

(c) Evaluation of Pareto front quality using the
established IGD and HV metrics.

Figure 6: DEEPDECS controller synthesis model and results for the driver-attentiveness management system

13

ditional-software components, can then consider these states
and events in their decision making. However, deep-learning
components can never be 100% accurate. This limitation
poses a major challenge to established controller development
methods. The DEEPDECS method introduced in our paper
addresses this challenge through several key contributions.

First, we devised a new approach to quantifying aleatory
DNN uncertainty within the ODD of an autonomous system.
Using a suite of n DNN verification techniques, this approach
identifies 2n categories of DNN outputs, each of which is as-
sociated with a different trustworthiness level. The uncertainty
of each category of DNN outputs is then separately quantified
using a unique combination of development-time and online
DNN verification. This enables the controllers of autonomous
systems to consider each category of DNN outputs differently.
In particular, these controllers can react confidently to highly
trustworthy DNN outputs, and conservatively to DNN outputs
associated with low trustworthiness levels. Importantly, we
showed experimentally that the vast majority of DNN outputs
fell into the former category for the DNN-perception compo-
nents of two autonomous systems from different application
domains. Our approach to quantifying DNN uncertainty opens
up the opportunity to leverage the broad range of recently
devised DNN verification techniques8–10,12,30–32 that certify
DNN properties like local robustness and confidence.

Second, we developed a theoretical foundation for the
integration of DNN-perception uncertainty into discrete-time
stochastic models describing the behaviour of autonomous
systems. The new theory enables the formal analysis of
safety, dependability, performance and other key properties of
autonomous systems with necessarily imperfect deep-learning
perception components. Furthermore, it supports the formal
modelling of autonomous systems that use any combination
of online DNN verification techniques to quantify their
environment perception uncertainty.

Third, we showed how the DEEPDECS parametric DTMC
models of DNN-perception autonomous systems can be used
to synthesise both deterministic and probabilistic discrete-event
controllers for these systems. Given n1 constraints and n2 opti-
misation objectives that formalise in probabilistic temporal logic
the safety, dependability and performance requirements of an
autonomous system, this synthesis yields controllers guaran-
teed to satisfy the n1 constraints and that are Pareto-optimal
with respect to the n2 optimisation objectives. Importantly,
we showed how using larger numbers of DNN verification
techniques produces better sets of Pareto-optimal controllers.

Finally, we demonstrated the applicability of DEEPDECS
within two case studies from different application domains.
For the first case study, we synthesised probabilistic collision-
limitation controllers for a mobile robot travelling in an
environment where another moving autonomous agent may
also be present. To obtain these controllers, we discretised the
controller parameter space, and then performed an exhaustive
search over all possible combinations of discretised parameter
values. For the second case study, we used multi-objective
genetic algorithms to synthesise deterministic controllers for
a driver-attentiveness management system.

While our paper focuses on controller synthesis for

autonomous systems with DNN perception components,
DEEPDECS is not prescriptive about the type of machine
learning (ML) components that introduce uncertainty into au-
tonomous systems. We therefore envisage that DEEPDECS is
equally applicable to additional such systems, as long as analo-
gous ML verification methods exist to enable the quantification
of the aleatory uncertainty introduced by their ML components.
Examples of other ML techniques that utilise confidence
measures to quantify the uncertainty of their predictions
include support vector machines and Gaussian processes.

While the design of autonomous systems that use DNN
classifiers for perception in combination with discrete-event
controllers for decision-making has been studied,33–35

synthesizing safe and optimal discrete-event controllers that
account for the uncertainty in the DNN outcomes is a novel
contribution of this work. Additionally, our DNN uncertainty
quantification mechanism, which uses the outcomes of
off-the-shelf DNN verifiers in a black-box manner, is also new.

Related work includes the approach of Jha et al.33 that syn-
thesize correct-by-construction controllers for autonomous sys-
tems with noisy sensors, i.e., with perception uncertainty. Un-
like our approach, they only consider systems using linear mod-
els (i.e., not DNNs) for perception where the uncertainty quan-
tities are already known. Moreover, while we formulate the
control problem as a pDTMC, Jha et al. consider the simpler
setting of deterministic linear systems. Michelmore et al.34 ana-
lyze the safety of autonomous driving control systems that use
DNNs in an end-to-end manner for both perception and control,
i.e., the DNN consumes sensor readings and outputs control
actions. They use Bayesian methods for calculating the uncer-
tainty in the control actions predicted by the DNN, and in case
the DNN uncertainty is higher than pre-determined thresholds,
the system defaults to executing fail-safe actions. In contrast,
we synthesize controllers that can use the quantified uncer-
tainty of DNN perception in order to select optimal yet safe
actions. Cleaveland et al.35 study verification of autonomous
systems with machine learning-based perception. They are
interested in situations where the controller has already been
constructed and the uncertainty in the perception outcomes is
known, so the only goal is to verify if the autonomous system
satisfies a required probabilistic specification of safety.

There is a large body of work on quantifying the uncertainty
in DNN classifiers. One major approach is to consider K-class
DNN classifiers as functions that map an input x ∈ Rd to a
discrete probability distribution over K classes. The probability
associated with a class is then interpreted as the probability
that the class is the true label of x. For these probability
estimates to be useful for downstream decision-making, it is
essential that the DNN is well-calibrated, i.e., the predicted
probabilities are close to the true probabilities. Formally, a
DNN f is perfectly calibrated if the following holds,

∀ p∈ [0,1]. P
x∼D

[y=f∗(x) | p̂=p]=p, (34)

where y=argmaxi∈[K]{f(x)i}, i.e., y is the predicted label, and
p̂=f(x)y, i.e., p̂ is the estimated probability associated with the
predicted label. It has been shown that modern DNNs are not
well-calibrated.12 Even with carefully designed interventions to
ensure well-calibration, there is no guarantee that the proba-

14

Table 1: Robot collision avoidance parameters

Parameter Value

α 0.5
xgoal 0
ygoal 10
ε 0.05
xlim 10
ylim 10
slim 2 units/s
θ̇lim

π
4

rads/s

bility estimates are close to the true values. Another approach
to quantifying the uncertainty of DNN prediction is to use
Bayesian techniques. In particular, Bayesian Neural Networks
(BNNs) have been proposed as a Bayesian extension of DNNs.
As opposed to DNNs where the weights θ associated with a
DNN are fixed, BNNs consider a distribution over the weights,
and the BNN prediction is the expected outcome with respect
to the weights distribution. While a BNN can produce an es-
timate of the prediction uncertainty, even these estimates are
not necessarily well-calibrated due to the possibility of model
mis-specification.36 Alternately, techniques based on confor-
mal prediction37,38 can be used to construct prediction sets,39

i.e., a set of predicted values instead of a single predicted
value for a given input, such that the true label is guaranteed
to be in the prediction set with a user-controllable probability.

4 Methods
Dataset collection. We obtained the dataset for the colli-
sion avoidance study using the 2D particle simulator Box2D
(https://box2d.org/). The robot and collider were circular particles
with radius of 0.5 units. The robot was initialised at the origin with
a heading of π

2
radians, however the robot only considers the local

coordinate frame with itself as the reference, i.e. the initial heading
is also 0 radians. The robot would travel in a straight line to the goal
destination at coordinate (0,10) with a speed of 1 unit per second.
The robot is considered to have successfully completed the journey
if the robot is within the goal area which is defined as

(x̂,ŷ)=(xgoal±ε,ygoal±ε)

The robot will have an angular velocity as

θ̇r=α·arctan
(
vx ·ygoal−vy ·xgoal

vx ·xgoal+vy ·ygoal

)

where vx and vy is the velocity of the robot in the x-axis and y-axis
respectively, and α is a scaling constant. If the difference between
the robot’s and the target heading is greater than π

36
then the robot’s

linear speed is reduced to 0.1, allowing time to correct its course.
The collider’s initial position is

(x,y,θ)=(U(−xlim,xlim),U(0,ylim),U(−π,π))

where U is the uniform distribution function. The collider’s linear speed
and angular speed were determined using the following function

(s,θ̇c)=(U(0,slim),U(−θ̇lim,θ̇lim))

Table 1 provides the values used for the experimental setup.

Table 2: Hyperparameters for training DNN models

Hyperparameter Collision Detection DNN Driver Attentiveness Levels DNN

of epochs 100 100
batch size 32 128
initial learning rate 0.005 0.01
optimizer Adam Adam
ε 0.05 0.01
τ 0.8 0.7

A collected datapoint was of the form (xdiff ,ydiff ,s,θ,θ̇c,c), where
xdiff and ydiff is the relative distance in the x and y axes between
the robot and collider, and c is the label for collision/no collision. The
datapoints were normalised for the DNN; [0,1] for ydiff and s and
[-1,1] for xdiff , θ and θ̇c.

The training data for the collision detection DNN was gathered
through repeated simulations until 6×103 instances of collisions and
6×103 instances of no collisions occurred, with the collider’s setup
normalised and recorded. The time to complete a journey with a colli-
sion, and the time to complete without a collision was calculated from
averages of 10×103 simulations for both collision and no collision
instances. We used 80% of this dataset for training the DNN and
20% for calibration and validation. To gather the test dataset, 50×103

simulations were conducted which had a split of 5843 collisions and
44157 no collisions. This was passed through the trained DNN with
the verification methods and the resultant confusion matrices were
used to generate the model’s probabilities of the DNN, see Figure 4a.

The dataset for the driver attentiveness management DNN was
obtained from a user study28 conducted as part of our SafeSCAD
project. The data was normalised in the range [0,1]. We used 60%
of the dataset for training the DNN and 15% for calibration and
validation. The remaining 25% of the dataset was used for testing
the DNN model and constructing the confusion matrices.

DNN training. The two autonomous systems considered in
our evaluation, namely, a mobile robot navigation system and a
system for maintenance of driver attentiveness level, use DNN-based
classifiers for perception. In the first case, a DNN is used to detect
if a mobile robot is on a collision path with another mobile robot in
the second environment. In the second case, a DNN helps gauge
a car driver’s attentiveness levels.

The DNN for collision detection has the architecture prescribed
by Ehlers24- the network has a fully-connected linear layer with 40
nodes, followed by a MaxPool layer with pool size 4 and stride size
1, followed by a fully-connected ReLU layer with 19 nodes, and a
final fully-connected ReLU layer with 2 nodes. The DNN for gauging
driver attentiveness level has an architecture with 10 layers, with
eight fully-connected layers and two MaxPool layers (with additional
Reshape layers as needed) . The 10 layers from start to end are as
follows - fully-connected ReLU layer with 23 nodes, fully-connected
ReLU layer with 50 nodes, fully-connected ReLU layer with 80 nodes,
MaxPool layer with pool size 4 and stride size 1, fully-connected
ReLU layer with 40 nodes, MaxPool layer with pool size 4 and stride
size 1, fully-connected ReLU layer with 20 nodes, fully-connected
ReLU layer with 14 nodes, fully-connected ReLU layer with 8 nodes,
and a fully-connected linear layer with 3 nodes.

We train these models with a cross-entropy loss function (implicitly
assuming a final softmax layer for both the DNNs) using the Adam
optimization algorithm.40 Table 2 lists the hyperparameters used for
training the DNN models. Note that the learning rate in both cases
is set to decay to 0.0001. We implement our DNN models and their
training in Python, using TensorFlow.

15

DNN verification. We use DNN verifiers that check if a DNN
satisfies specific properties of interest to augment a DNN’s outcome.
For every input, in addition to the DNN’s prediction, the controller has
access to the boolean outcomes of the DNN verifiers to aid in decision-
making. As described in Section 1.3, we also use the DNN verification
outcomes to construct fine-grained confusion matrices from the val-
idation dataset. These confusion matrices help us compute empirical
estimates of the probability of an incorrect prediction, conditioned
on the correct prediction and the verification outcomes. These esti-
mates are then used to synthesize a discrete-event controller that can
account for the uncertainty in DNN predictions in it’s decision-making.

The specific DNN properties that we consider for verification are
the local robustness of the DNN at an input, and the probability
assigned by the DNN classifier to the predicted class. For local
robustness verification, we use the GloRo Net framework of Leino et
al.30 Given a DNN, the GloRo Net framework adds a new final layer
to the network that augments the DNN outcome with an additional
outcome indicating the local robustness of the DNN. This new layer
computes the Lipschitz constant of the function denoted by the
original DNN and uses it to verify local robustness. Instead of training
the original DNN, the GloRo Net framework recommends training
the modified DNN to help improve the robustness of the network.
We follow this recommendation for both the systems that we study,
and update the DNN architectures described earlier by adding the
layer provided by the GloRo Net framework as the final layer. For
the collision detection DNN, we verify local robustness of the within
radius ε=0.05 (where ε is as defined in 4) whereas we use ε=0.01
for the DNN that gauges driver attentiveness levels.

For verifying if the DNN predictions meets a minimum confidence
threshold, we look at the softmax output of the DNN classifier that
assigns a probability to each class. To ensure that the DNN softmax
outputs are well-calibrated, we use the simple temperature scaling
mechanism presented by Guo et al.12 as implemented by Kueppers
et al.41 We use the probability threshold τ of 0.8 for the collision
detection DNN and threshold τ of 0.7 for the DNN that predicts driver
attentiveness levels (where τ is as defined in 3).

SafeSCAD DNN-perception controller synthesis. The
probabilistic model synthesis tool EvoChecker20 was required for
generating the Pareto fronts in the SafeSCAD study due to the
large search space. For all setups the population size for the
multi-objective genetic algorithm employed by EvoChecker was set
to 1000 and the maximum number of evaluations was 20 × 104.
EvoChecker utilised the Viking Cluster (see here for full tech-
nical details https://www.york.ac.uk/it-services/services/
viking-computing-cluster/#tab-1), and specifically used 5 CPUs
and 8GB of memory, with a set maximum time of five hours.

Pareto front hypervolume evaluation. HV for both
case studies was calculated using the package PyGMO
(https://esa.github.io/pygmo/). For HV a nadir point is required,
which is usually found via the extrema of the reference frame scaled
by a constant. The Pareto fronts of the setup with the perfect DNN
were used as the reference frames, with a scaling factor of 1.5 in
the collision avoidance scenario and 1.75 for the SafeSCAD study.

PyGMO for HV calculation requires the system’s goal to minimise
all objectives. Therefore for the collision avoidance scenario a Pareto
front was generated to no longer maximise P=?[¬collisionUdone] but
instead minimise P=?[collisionU done], i.e. maximise probability of
being safe to minimise probability of being at risk. This was achieved
by using the existing Pareto front and calculating the complementary
probability; 1−P=?[¬collisionUdone].

Validation of collision-mitigation controllers. The results
presented in Figure 4d were achieved by first acquiring data buckets
for setups resulting in collision and no collision. This was to ensure
that the probability of encountering a collider that will result in collision
in the model was replicated in the simulator. Simulations were
conducted until 50×103 collision instances and 50×103 no collision
instances were recorded. To ensure that these were guaranteed
setups to achieve the desired result each setup was tested through
100 simulations to assure that the outcome was consistent. For
the simulations producing the results in Figure 4d the setup for the
collider (providing a collider was present determined by probability
pcollider) used the weighted probability used in the model, pocc see
Figure 3. The robot used the trained DNN and verification methods
to decide which parameter of the synthesised controller to use. If
the robot decided to wait the wait time was added and the simulation
restarted, i.e. the old collider was removed with a new collider. Once
the robot had completed it’s journey the journey time was recorded
along with whether a collision occurred. To compare with the model,
the model’s results were subtracted from the simulator’s averaged
values to acquire the difference plotted in Figure 4d.

Acknowledgements
This project has received funding from the UKRI project
EP/V026747/1 ‘Trustworthy Autonomous Systems Node in
Resilience’, the UKRI Global Research and Innovation Programme,
and the Assuring Autonomy International Programme. The authors
are grateful to the developers of the DeepTake deep neural network28

for sharing the DeepTake data sets, and to the University of York’s
Viking research computing cluster team for providing access to their
systems.

References
[1] Alvin I. Chen, Max L. Balter, Timothy J. Maguire, and Martin L.

Yarmush. Deep learning robotic guidance for autonomous
vascular access. Nat Mach Intell, 2:104––115, 2020.

[2] Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-
Paredes, Stanislav Nikolov, Nenad Tomasev, Sam Blackwell,
Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel
Visentin, et al. Clinically applicable deep learning for di-
agnosis and referral in retinal disease. Nature medicine,
24(9):1342–1350, 2018.

[3] Thomas Fischer and Christopher Krauss. Deep learning
with long short-term memory networks for financial market
predictions. European Journal of Operational Research,
270(2):654–669, 2018.

[4] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and
Gigel Macesanu. A survey of deep learning techniques for
autonomous driving. Journal of Field Robotics, 37(3):362–386,
2020.

[5] Domen Tabernik and Danijel Skočaj. Deep learning for large-
scale traffic-sign detection and recognition. IEEE Transactions
on Intelligent Transportation Systems, 21(4):1427–1440, 2019.

[6] Rob Ashmore, Radu Calinescu, and Colin Paterson. Assuring
the machine learning lifecycle: Desiderata, methods, and
challenges. ACM Computing Surveys, 54(5):1–39, 2021.

[7] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. A
survey of automated techniques for formal software verification.

16

IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(7):1165–1178, 2008.

[8] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian,
Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu
Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The Marabou
framework for verification and analysis of deep neural networks.
In CAV, pages 443–452. Springer, 2019.

[9] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu.
Safety verification of deep neural networks. In Rupak Majumdar
and Viktor Kunčak, editors, CAV, pages 3–29, 2017.

[10] Divya Gopinath, Guy Katz, Corina S Păsăreanu, and Clark
Barrett. DeepSafe: A data-driven approach for assessing
robustness of neural networks. In ATVA, pages 3–19, 2018.

[11] On-Road Automated Driving (ORAD) committee. Taxonomy
and definitions for terms related to driving automation systems
for on-road motor vehicles. Standard J3016_201806, SAE
International, 2018.

[12] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In Proceedings of the
34th International Conference on Machine Learning - Volume
70, ICML’17, page 1321–1330. JMLR.org, 2017.

[13] Nicholas Carlini and David Wagner. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy, pages 39–57. IEEE, 2017.

[14] Conrado Daws. Symbolic and parametric model checking of
discrete-time Markov chains. In International Colloquium on
Theoretical Aspects of Computing, pages 280–294, 2005.

[15] Hans Hansson and Bengt Jonsson. A logic for reasoning about
time and reliability. Formal Aspects of Computing, 6(5):512–535,
1994.

[16] Andrea Bianco and Luca De Alfaro. Model checking of
probabilistic and nondeterministic systems. In International
Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 499–513. Springer, 1995.

[17] Suzana Andova, Holger Hermanns, and Joost-Pieter Katoen.
Discrete-time rewards model-checked. In International Con-
ference on Formal Modeling and Analysis of Timed Systems,
pages 88–104. Springer, 2003.

[18] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM
4.0: Verification of probabilistic real-time systems. In Proc. of
the 23rd Int. Conf. on Computer Aided Verification, volume 6806
of LNCS, pages 585–591. Springer, 2011.

[19] Radu Calinescu, Milan Ceska, Simos Gerasimou, Marta
Kwiatkowska, and Nicola Paoletti. Efficient synthesis of robust
models for stochastic systems. Journal of Systems and
Software, 143:140 – 158, 2018.

[20] Simos Gerasimou, Radu Calinescu, and Giordano Tamburrelli.
Synthesis of probabilistic models for quality-of-service software
engineering. Automated Software Engineering, 25(4):785–831,
2018.

[21] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen.
Deep neural network compression for aircraft collision avoid-
ance systems. Journal of Guidance, Control, and Dynamics,
42(3):598–608, 2019.

[22] Kyle D Julian and Mykel J Kochenderfer. Reachability analysis
for neural network aircraft collision avoidance systems. Journal
of Guidance, Control, and Dynamics, 44(6):1132–1142, 2021.

[23] Qingyang Xu, Yiqin Yang, Chengjin Zhang, and Li Zhang.
Deep convolutional neural network-based autonomous marine
vehicle maneuver. International Journal of Fuzzy Systems,
20(2):687–699, 2018.

[24] Rüdiger Ehlers. Formal verification of piece-wise linear
feed-forward neural networks. In Deepak D’Souza and
K. Narayan Kumar, editors, Automated Technology for
Verification and Analysis, pages 269–286. Springer, 2017.

[25] David A. Van Veldhuizen. Multiobjective evolutionary algorithms:
classifications, analyses, and new innovations. PhD thesis, Ph.
D. thesis, 1999.

[26] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength pareto
approach. IEEE transactions on Evolutionary Computation,
3(4):257–271, 1999.

[27] UNECE. ECE/TRANS/WP.29/2020/81—United Nations Regu-
lation on Uniform provisions concerning the approval of vehicles
with regard to Automated Lane Keeping Systems, June 2020.

[28] Erfan Pakdamanian, Shili Sheng, Sonia Baee, Seongkook
Heo, Sarit Kraus, and Lu Feng. DeepTake: Prediction of
driver takeover behavior using multimodal data. In 2021 CHI
Conference on Human Factors in Computing Systems, pages
1–14, 2021.

[29] Radu Calinescu, Naif Alasmari, and Mario Gleirscher. Maintain-
ing driver attentiveness in shared-control autonomous driving.
In 16th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 90–96. IEEE,
2021.

[30] Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust
neural networks. In International Conference on Machine
Learning (ICML), 2021.

[31] Colin Paterson, Radu Calinescu, and Chiara Picardi. Detection
and mitigation of rare subclasses in deep neural network
classifiers. In 2021 IEEE International Conference on Artificial
Intelligence Testing, pages 9–16. IEEE, 2021.

[32] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin
Vechev. An abstract domain for certifying neural networks. Proc.
ACM Program. Lang., 3(POPL), jan 2019.

[33] Susmit Jha, Vasumathi Raman, Dorsa Sadigh, and Sanjit A.
Seshia. Safe autonomy under perception uncertainty using
chance-constrained temporal logic. Journal of Automated
Reasoning, 60(1):43–62, 2018.

[34] Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca
Cardelli, Yarin Gal, and Marta Kwiatkowska. Uncertainty quan-
tification with statistical guarantees in end-to-end autonomous
driving control. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 7344–7350, 2020.

[35] Matthew Cleaveland, Ivan Ruchkin, Oleg Sokolsky, and
Insup Lee. Monotonic safety for scalable and data-efficient
probabilistic safety analysis, 2021.

[36] Edwin Fong and Christopher C. Holmes. Conformal bayesian
computation. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

[37] Volodya Vovk, Alexander Gammerman, and Craig Saunders.
Machine-learning applications of algorithmic randomness. In
Proceedings of the Sixteenth International Conference on
Machine Learning, pages 444–453, 1999.

[38] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer.
Algorithmic learning in a random world. Springer Science &
Business Media, 2005.

17

[39] Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra
Malik, and Michael Jordan. Distribution-free, risk-controlling
prediction sets. J. ACM, 68(6), September 2021.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun, edi-
tors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[41] Fabian Küppers, Jan Kronenberger, Amirhossein Shantia, and
Anselm Haselhoff. Multivariate confidence calibration for object
detection. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2020.

18

	Introduction
	Prediction of Driver Takeover Behavior using Multimodal Data
	Motivation and Background
	Our Approach
	Evaluation
	Implications

	Verification of Deep Neural Networks
	Attribution and Trust in Neural Networks
	Results

	Clustering for Robustness Analysis
	Clustering Results
	Verification with Marabou

	Calibration and Confidence
	Results

	Synthesis of Safe-SCAD Controllers
	Problem definition
	SafeSCAD controller synthesis

	Safe-SCAD Demonstrator Evaluation
	Apparatus and Data Collection
	Experimental Design
	Independent Factors
	Dependent Measures

	Procedure
	Result Analysis
	Effects on Driver Takeover Reaction Time (RQ1)
	Effects on Driver Stress and Cognitive Workload (RQ2)
	Driver Perceptions (RQ3)

	Appendix DeepTake: Prediction of Driver Takeover Behavior Using Multimodal Data
	Appendix Formal Analysis of a Neural Network Predictor in Shared-Control Autonomous Driving
	Appendix Maintaining driver attentiveness in shared-control autonomous driving
	Appendix Discrete-Event Controller Synthesis for Autonomous Systems with Deep-Learning Perception Components

